AFRL-RI-RS-TR-2016-162

THUTMOSE — INVESTIGATION OF MACHINE LEARNING-BASED
INTRUSION DETECTION SYSTEMS

BAE SYSTEMS INFORMATION AND SECURITY
JUNE 2016

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

B AIR FORCE MATERIEL COMMAND B UNITED STATES AIR FORCE B ROME, NY 13441

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88" ABW, Wright-Patterson AFB Public Affairs Office and is

available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2016-162 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

Y Y
MISTY K. BLOWERS ROBERT KAMINSKI for
Work Unit Manager WARREN H. DEBANY, JR.

Technical Advisor, Information Exploitation
and Operations Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE e 0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
JUNE 2016 FINAL TECHNICAL REPORT SEP 2013 - NOV 2015
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
FA8750-13-C-0278
THUTMOSE - INVESTIGATION OF MACHINE LEARNING-BASED ST GRANT NUVBER
INTRUSION DETECTION SYSTEMS ' N/A
5c. PROGRAM ELEMENT NUMBER

63788F
6. AUTHOR(S) 5d. PROJECT NUMBER

THUT
Anania, Mark; Corbin, George; Kovacs, Matthew; Nelson, Kevin; Tobias,
Jeremy 5e. TASK NUMBER

MO
5f. WORK UNIT NUMBER
SE
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
BAE Systems Information and Security REPORT NUMBER
581 Phoenix Drive, Building 798
Rome, NY 13441
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
Air Force Research Laboratory/RIGB AFRL/RI
525 Brooks Road 11. SPONSOR/MONITOR’S REPORT NUMBER
Rome NY 13441-4505
AFRL-RI-RS-TR-2016-162

12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2016-2984
Date Cleared: 17 JUN 2016

13. SUPPLEMENTARY NOTES

14. ABSTRACT

In support of Air Force objectives to improve the Offensive and Defensive cyber-capabilities of the war fighter, this project endeavored
to study learning systems researched and developed for cyber defense of network resources. Specifically, intrusion detection systems
that were built with machine learning operations were studied to understand: the research behind the approach, the data they were
designed to protect, the features processed, the algorithms used and the degree to which they were resistant and resilient to
experimentally induced adversarial data drift. The results of this work provide deep insight into the strengths and weaknesses of the
studied learning systems while operating within an adversarial environment. This insight will enable the design and development of
future machine learning-based intrusion detection systems (ML-IDS) to be more hardened and effective in defending our nation’s
networked resources. The experimentation results will aid in selecting or designing stronger algorithms, choosing better features, and
more effectively monitoring resources. The toolset produced to run the experiments may be re-used and enhanced to make designing
and testing of these future defenses faster and more effective.

15. SUBJECT TERMS

Machine Learning, Cyber Space, Intrusion Detection

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF |18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF PAGES MlSTY K BLOWERS
a. REPORT b. ABSTRACT c. THIS PAGE 92 19b. TELEPHONE NUMBER (Include area code)
U U U uu N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

TABLE OF CONTENTS

LIST OF FIGURES....ccuuiitteuiitteneetreneeerenseessenseessessesssassesssssssssssssssssssssssssssssssssssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnne |
LIST OF TABLES ... ceeuiiitteniitteneitteneettenseeeresseessessesssassesssessssssssesssssssssssssssssssssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnne |
L1.0 SUIMIMARYiteuiiittenneetrenneetrenseessessessssssessssssessssssesssssssssssssesssasssssssssssssssssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnne 1
2.0 INTRODUCGTION...cceuuiitteneerrrennerrrenseesressessssssssesssssssssssssessssssesssessanssssssnssessansssssannnns 1
B N U 10 PPN 1
2.2 BACKGROUND ..eiiiiiiiiiiieieieeeeeeeeeeeee e e ee e e e e e e e e e e e e e e eeeeeeeeeeeaeaeaeaeaeaeaeaeaeaeaaaeeaaeaeaeaeeaeeaesereeeeeeetereteseeeeeeerererererererereeerereeenens 1
P (o0 PPN 2
3.0 TECHNICAL FACTORS OF EXPERIMENTATIONccttttuiittnneerenneerreneceresseessassessssssessssssesssnssssssassessssssssssansesssnnsans 3
3.1 METHODS, ASSUMPTIONS, AND PROCEDURES «.ceeeveeeeesseeeressesesnssesssassessssssessssssesssssssssssssesssssssssssnssssssnsssssanssssssnsssssanse 3
3.2 RESULTS AND DISCUSSION c..ccteeneeeerensereressesssassesssassessssssesssnssessssssessssssesssssssssssnsssssssssssssnssssssnssssssnssssssnssssssnsssssanne 5
IV WV o oY g 111 ¢ BN =1 [=ox 1 o] £ KA SR UP PRt 5
3.2.2 REAI WOIIU MLAIDS. ...ttt ettt ettt e sttt s e s s s s sssansansanannn 11
3.2.3 OPLIMUZALION SCIECLION ...ttt e e ettt e e e e e ettt e e e e e e et s s aaaaeesssssssaaaaeeeeasssssanaaaaean 18
IR WY, Lo Yo T (=R 0o [(oI Y [1V Lo 1 (] 24
3.2.5 MOAE! DIift EXDEIIMENLSooceeeeeeeeeeeeeeee ettt e e et e ettt e e ettt e e et a e ettt e e e aasteaessseasasstsaaeasssaenssnasasssesansnnes 29
I N N o 0e [0 3 oY1 o [1T 1 X 33
IV A | O 5 (oY= 4 [1 1=1 1 1 35
R B (O Yo [T IR YO Y 5 37
4.0 CONCLUSIONS......coetteeeeeciieerteennnsseeeeereennsssssseseseeennssssssssssesnnsssssssssseesnssssssssssessnnsssssssessesnnnssssssssssssnnassssssnsssnnn 37
4.1 RECOMMENDATIONS ..etttttertrerereseresesesesesesesesesesesessssseseseseseseseseseseseseeeseseeeeeeeeeeeeeteseeeteseeeeeeteretereeereeeeerererererereeerereenn 37
A U LUy Y 7 Lol PN 39
5.0 REFERENCGESctteuiiiteneitreneerreneetrensessressesssessesssansessssssssssansesssssssssssnssssssnssssssnssssssnssssssnssssssnssssssnsssssansssssanne 41
APPENDIX A - DATA MINING IN CYBER OPERATIONS (CYBERSECURITY SYSTEMS FOR HUMAN COGNITION
AUGMENTATION) c.ceueeeennennnnennnnnnnssnsasansane 42
APPENDIX B - EVALUATING DATA DISTRIBUTION AND DRIFT VULNERABILITIES OF MACHINE LEARNING
ALGORITHMS IN SECURE AND ADVERSARIAL ENVIRONMENTS (SPIE DSS 2014)ccuuueeueeeeennnnnnnnssssssssssssnsnsnnnnns 58
APPENDIX C - EVALUATING MODEL DRIFT IN MACHINE LEARNING ALGORITHMS (IEEE CISDA 2015)................... 71
LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYIMS.....cceeeuiciirereeennnssceeesereennssssssssssseennsssssssssssssnnssssssssssssnnnnnes 86

LIST OF FIGURES
Figure 1: Experimental approach to determine effort required by an adversary to force

MiSClasSifiCAtioNS =-------m=mmmmmm oo 5
Figure 2: Year-wise distribution of articles for single classifiers according to (Tsai, Hsu, Lin,

& LN, 2000) --=nmmmmmmm e e e e 6
Figure 3. Details of surveyed papers according to (Tavallaee, Stakhanova, & Ghorbani,

20010 === == mm e e e 6
Figure 4: Centroid Anomaly Detector --------m-mmmmm oo 8
Figure 5: Hidden Markov Model ---=-==-====mmm e m e e e e 9
Figure 6: Support Vector Maching --------== - e oo 10
Figure 7: SUStOrID’s uSer iNterface ------=--=====mmmm s e e 12
Figure 8: Simple HTML TeSt Page ----------=-mmm s m oo 13
Figure 9: HMMPay| proCess OVEIVIEW --=-==-==-mmmmm e o e e e e 15
Figure 10: MCPAD ProCess OVerVIEW =----mnmmmmmm e s oo e e 16
Figure 11: Illlustration of optimal drift strategy against a centroid anomaly detector ------- 19
Figure 12: Segment of Java API class diagram ---------=-=-=mmmmmm oo 27
Figure 13: Screenshot of Monte Carlo Simulator GUI--------=--=====mmmmmmm e 28
Figure 14: Screenshot of visual display of experimental results provided by Monte Carlo

SIMUIALOr GU l-mmmmmmm e m e oo 28
Figure 15: Colors randomly sampled from a Gaussian distribution ---------------=---------—- 30
Figure 16: Effort required by an adversary to cause misclassifications of selected anomalous

color values using various ML algorithms --------=-====-=-emmmmmmeem oo 32
Figure 17: Effort required by an adversary to cause HMMPayl to misclassify selected attack

PAYI0AAS === === e e 35

LIST OF TABLES

Table 1: Taxonomy of attacks against ML systems with examples----------=-==-=====-nmnum--- 2
Table 2: Methods utilized during experimentation with SuStorID to generate training and

teSt data------mmmmmmm e e 13
Table 3: Machine learning cyber security applications identified but not further

(T 1 g <o 18

Table 4: Optimization strategies examined for generating optimal drift points for HMMs 21
Table 5: Optimization strategies examined for generating optimal drift points for SVMs - 22
Table 6: Data sources implemented and incorporated into Java AP --------------mmemnmeemm- 25
Table 7: Functionalities offered by MonteCarloSimulator class in Java APl ---------------- 26
Table 8: Performance comparison of optimal insertion point generation approaches------- 33

1.0 SUMMARY

In support of Air Force objectives to improve cyber capabilities of the war fighter, this project
endeavored to study learning systems researched and developed for cyber defense of network
resources. Specifically, intrusion detection systems (IDSs) that were built with machine learning
(ML) operations were studied to understand: the research behind the approach, the data they were
designed to protect, the features processed, the algorithms used and the degree to which they were
resistant and resilient to experimentally induced adversarial data drift. The results of this work
provide deep insight into the strengths and weaknesses of the studied learning systems while
operating within an adversarial environment. This insight will enable the design and development
of future machine learning-based intrusion detection systems (ML-IDS) to be more hardened and
effective in defending our nation’s networked resources. The experimentation results will aid in
selecting or designing stronger algorithms, choosing better features, and more effectively
monitoring resources. The toolset produced to run the experiments may be re-used and enhanced
to make designing and testing of these future defenses faster and more effective.

In the course of this research, the team had the opportunity to co-author a book chapter and two
papers as well as present the findings from this project at several technical conferences. The book
chapter and two papers are included in the appendices.

2.0 INTRODUCTION

2.1 Purpose

The Thutmose project supported the Air Force Research Laboratory’s (AFRL) mission to enhance
cyber capabilities. Military computer networks are constantly under attack from adversaries who
wish to compromise the integrity, confidentiality, or availability of system resources. In order to
combat these attacks, intrusion detection systems are often put in place to monitor network and
system resources for signs of malicious activity. Most commonly used IDSs are designed to detect
signatures or patterns indicative of known attacks. However, these systems are rarely able to detect
zero-day attacks or even slight modifications made to known attacks made by intelligent
adversaries. For this reason, much research is being done to incorporate the field of machine
learning into intrusion detection. Machine learning is a branch of artificial intelligence (Al) which
focuses on the creation of models or rules which generalize and represent known data. An ML-
IDS would either learn a model representing the normal behavior of a system and detect deviations
from this model, or learn patterns from known attacks that could be generalized to new ones as
well. These systems have shown considerable success in research environments, and it appears
likely that they will begin to become much more common in operational systems. The focus of
this effort was on the study of ML-IDSs and their inherit vulnerabilities and weaknesses in order
to assess their potential defensive capabilities.

2.2 Background

AFRL undertakes ongoing activity that requires development, implementation, integration, and
evaluation of new techniques and software in the cyber domain. Therefore, there is a need to
support capabilities that would support operational and mission requirements.

Approved for Public Release; Distribution Unlimited.
1

2.3 Scope

This effort was heavily research oriented, focusing on an investigation of previous academic
research done in the field of ML-IDS, as well as actual implementations of IDSs which employ
ML techniques. Key questions about these systems were established and were the focus of the
initial investigation. The goal of the effort was to develop a methodology to measure the security
of these ML algorithms when under attack in an adversarial environment, while identifying inherit
strengths and weaknesses of these ML models.

Barreno et al. created a taxonomy to categorize potential attacks an adversary may employ against
an ML system. Table 1 below is reproduced from the paper “The security of machine learning.”

Table 1: Taxonomy of attacks against ML systems with examples

Causative:

Targeted

Indiscriminate

Exploratory:
Targeted

Integrity

Availability

The infrusion foretold: mis-train a par-
ticular intrusion

The rogue IDS: mis-train IDS to block
certain traffic

The intrusion foretold: mis-train any
of several intrusions

The rogue IDS: mis-train IDS to
broadly block traffic

The shifty infruder: obfuscate a chosen
intrusion

The mistaken identity: censor a partic-
ular host

The mistaken identity: interfere with
traffic generally

The shifty intruder: obfuscate any in-

Indiscriminate .
trusion

This taxonomy was designed to address how an attack can affect the ML system. An attack has
three dimensions: the Influence, the Security Violation and the Specificity of the attack. Influence
is either causative or exploratory; the Security Violation attacks either integrity or availability; and
the Specificity is either targeted or indiscriminate.

Integrity of the system is a measure that demonstrates the authenticity of data as having not been
altered from origination or otherwise corrupted by malicious or accidental means. An Integrity
attack is destructive in nature. Availability is a measure that represents how readily the data is
accessed and used as intended by authorized users for intended and authorized purposes. An
availability attack is a denial of service, either of specific resources or large-scale across a network.

The approach adversaries use may be causative, in which they take actions to bring about changes
in the learning model through influence over the training data, or else exploratory in which their
actions simply probe/investigate for potential weaknesses that can be exploited with another
action. These causative and exploratory actions can be of two forms: targeted and indiscriminate.
Targeted and indiscriminate attacks differentiate in their specificity and scope.

This effort primarily investigated targeted causative attacks against integrity, also known as
adversarial drift, as this type of attack has been addressed very little in existing research. Under
this type of attack, an adversary attempts to cause a specific point which is otherwise classified as

Approved for Public Release; Distribution Unlimited.
2

anomalous by the learning model to be misclassified as normal through influence over the training
data. Initial experiments focused on evaluating the extent to which an adversary could affect the
algorithm'’s model and the amount of control an adversary would require over the training data in
order to cause misclassifications in the resulting learning model.

The most popular forms of ML-IDS utilize anomaly-detection, a method in which algorithms first
build a model of normalcy using benign network traffic and then evaluate new traffic against the
model to detect behaviors or patterns deviating from this established normalcy. These methods
have been shown to be effective at identifying potential threats to the system. Anomaly detection
is often the popular choice over other machine learning techniques such as binary classification
because it is often difficult to attain recent and representative malicious samples on which to train
the models. For these reasons, this effort focused specifically on anomaly detection algorithms.

These activities will assist AFRL/RIGB with future operations.
3.0 TECHNICAL FACTORS OF EXPERIMENTATION

3.1 Methods, assumptions, and procedures

Based on the vast amount of research done to incorporate machine learning into intrusion detection
systems combined with the inability of signature-based IDSs to detect unknown attacks, it is
assumed that ML-based IDSs will soon become much more prevalent in operational settings.
However, it is also known that ML tends to have several significant weaknesses, including a high
false alarm rate and an ability to be manipulated by an adversary inserting strategic data.
Therefore, studying the security and weaknesses inherit in ML-IDSs was considered an important
research platform. Specifically, we wanted to study the vulnerability of ML systems to adversarial
drift, a technique by which an adversary slowly inserts benign data that, over time and across
multiple retrain iterations, causes the learning models to drift towards accepting previously
anomalous points.

A series of questions about the systems studied was generated. The answers to these questions
were deemed necessary as they would drive experimental direction and allow us to more accurately
assess the potential defensive weaknesses in the IDSs. The questions included the following:

e What are the specifics of the machine learning algorithm implemented by the system? (If
it uses a neural network, is it an EIman network, Kohonan network, etc.?)

e What type of data does it use? (Network-based or host-based? Packet headers or payloads?
System calls?)

e How does it do feature selection or dimensionality reduction? Does it employ a kernel
function?

e How much data is used to train the initial classification model?

e How is the classification model re-trained? Is the existing model updated or is it replaced
with a new one?

e How often is the model re-trained and how much new training data is minimally required?

Our research approach began by identifying those machine learning algorithms which were most
prominent in the published literature and in available open-source implementations of ML-IDS.
After these algorithms were determined, the simplest ones that were also found to be common in

Approved for Public Release; Distribution Unlimited.
3

the literature were selected for further, more in-depth study. During this stage, we attempted to
find the most common answers to the above questions for each algorithm. The idea was to begin
with the simplest algorithms and progress to those which were more complicated, applying lessons
learned from the simpler cases along the way.

In an authentic network, an intruder would have limited access to information about an ML-IDS
which has been deployed. While we certainly have a concern for external threats, the worst case
scenario is an insider threat or an intruder who has already gained access to the internal network.
We base our initial assumptions on this perspective. In order to have a worst case scenario baseline
where a potential adversary would have near full control over the IDS and all associated and
requisite resources, several assumptions were made to start with. Again the idea was to start with
the simpler worst-case scenario, and to slowly remove assumptions in subsequent experiments,
applying lessons learned from the simpler cases along the way.

We operated under what is known as the contamination assumption. This means that the adversary
has the ability to insert points that will be used during retraining of the ML-IDS. Model drift is
often accounted for through the use of retraining and online learning, so it is not unreasonable to
assume an adversary could take advantage of this window to insert data. In our work, we also
limited this assumption to create a slightly more realistic case in which insertion points must be
classified as benign by the existing classifier in order to be included. We assume that the adversary
would wish to remain undetected by including only points that are not flagged as suspicious and
can be allowed into the re-training dataset via normal traffic through the monitoring ML-IDS. The
contamination assumption is necessary if the adversary desires to induce drift in the models and
force the ML-IDS to consider a point as normal that previous models would have otherwise
identified as anomalous and blocked.

In initial experiments, we assume the adversary has full knowledge of and access to the IDS, its
classification algorithms, the training data, and the results of classification. From this worst case
scenario, we could potentially dial back the assumed knowledge and access privileges an adversary
might have in order to gain a more realistic view of the measured weaknesses for each algorithm
in an adversarial environment.

The main goal of our work was to develop a methodology using a framework to study and test ML
algorithms which have or may be used in intrusion detection systems. This research was done in
an effort to demonstrate the strengths and weaknesses of these algorithms in regards to their
susceptibility to adversarial drift and offer suggestions for why and in what ways they can be
effectively used in an IDS. We intended to create a generic, universal framework to allow for the
simple incorporation of various additional algorithms using various training data sources. We
wanted to be able to compare multiple algorithms, multiple implementations of similar or identical
algorithms and to create repeatable experiments. Through experimental iterations, the framework
should provide statistical measurements and analysis that better inform a security administrator.

We developed a Java application programming interface (API) based around Monte Carlo
simulations to implement this framework and a prototype graphical user interface (GUI) to
expedite experimentation with the APl and enable automation of experimental runs. This APl and
GUI are detailed in section 3.2.4 Monte Carlo Simulator. The API allowed us to run a number
of experiments using various ML algorithms and data sources which are discussed further in
section 3.2.5 Model Drift Experiments.

Approved for Public Release; Distribution Unlimited.
4

The mathematical procedure defined in Figure 1 was developed to measure the number of points
an adversary must insert in order to cause a misclassification on a particular point, and therefore
the resistance of the ML algorithm to a targeted causative integrity attack or induced model drift.
In the figure, | is equal to the list of injection points selected by the adversary, g(xo) is equal to the
probability of xo according to the model with | injected into the training set, and y is equal to the
anomaly threshold.

mitializeI =&
while glxglr <y

argrax
=TI g (x)ree — 9(x0)s 5t g >y

addx " to I
return |1

*®

Figure 1: Experimental approach to determine effort required by an adversary to force
misclassifications

A key part of this effort was to determine the most optimal method for calculating x*, which is the
point that causes the greatest model drift in the direction of the adversary’s target point. A generic
approach was desired that would allow a number of different machine learning algorithms to be
quickly analyzed using our developed methodology. A number of different optimization strategies
were researched and developed and are detailed in section 3.2.

3.2 Results and Discussion

3.2.1 Algorithm Selection. Several machine learning algorithms that were most commonly used
in the research were identified. These included K-nearest neighbor (KNN), support vector
machines (SVM), artificial neural networks (ANN), decision trees (DT), self-organizing maps
(SOM), hidden Markov models (HMM), and Bayesian classifiers. The most common ML
algorithms proposed for IDSs according to two separate literature reviews are summarized in
Figure 2 and Figure 3.

Approved for Public Release; Distribution Unlimited.
5

Mo. of articles

2000 2001 2002 2003 2004 2005 2006 2007

Year

B Furzy Logic W SYM B ANN S50M
B k-NMN M Bayesian W DT GA

Figure 2: Year-wise distribution of articles for single classifiers according to (Tsai, Hsu,
Lin, & Lin, 2009)

Papers by intrusion detection types
Host-based studies 93 papers out of 276
Network-based studies 163 papers out of 276
Application-based studies 20 papers out of 276

Applied intrusion detection methods
Classification-based methods: | 160 papers out of 276

NN 25 papers out of 160
HMM 36 papers out of 160
SVM 20 papers out of 160
Bayesian networks 14 papers out of 160
Other methods 65 papers out of 160
Statistics-based methods 62 papers out of 276
Clustering 36 papers out of 276
Misc. methods 46 papers out of 276
(control-flow graph,
finite-state automata, etc.)

Figure 3: Details of surveyed papers according to (Tavallaee, Stakhanova, & Ghorbani,
2010)

Based on these findings, additional research, and findings from available real-world ML-IDS, we
selected four algorithms, Centroid Anomaly Detection, HMM, SVM, and K-Means Anomaly
Detection, to further explore initially. According to our research, these algorithms were among
the most commonly explored as well as being three of the simpler ML algorithms to conceptualize,
visualize, and understand. Upon selecting these algorithms, we began identifying and studying
research papers which described IDSs using each algorithm to determine how they answered the

Approved for Public Release; Distribution Unlimited.
6

questions posed above. Unfortunately, we did not have time to explore the additional identified
algorithms within the scope of this effort.

The research papers studied primarily relied on two different sources of data. The first was
network connection records and the second was system call traces. Much of the research utilized
the dataset from the Third International Knowledge Discovery and Data Mining (KDD) Tools
Competition as their source of network connection data. This data, referred to as the KDD Cup
’99 dataset, consists of individual connections, each labeled as either normal or as a specific type
of attack. It was created by processing the tcpdump portions of the 1998 Defense Advanced
Research Projects Agency (DARPA) IDS Evaluation dataset. While it is widely used in the
research, the KDD Cup ’99 dataset has several known problems and is outdated. The system call
traces used in much of the research come from the Basic Security Module (BSM) audit data portion
of either the 1998 or 1999 DARPA IDS Evaluation data.

A variety of dimensionality reduction and data pre-processing techniques were discussed in the
research. Some of the most common included normalization, principal component analysis (PCA),
converting symbolic features to numeric, and converting system call traces to frequencies of
individual calls.

3.2.1.1 Centroid Anomaly Detector. The first algorithm studied was the simple centroid anomaly
detector. This algorithm is trained by simply finding the empirical mean of the training examples.
An unlabeled data point is then tested by calculating its Euclidean distance to the mean, or centroid.
If this distance is greater than a determined threshold, then the point is considered to be anomalous.
Calculation of a data point’s anomaly score is summarized below.

n

1
X—Hin

i=1

f(x)=

Figure 4 shows an example of a centroid anomaly detector in two-dimensional space. The green
points within the anomaly threshold would be classified as normal while the red points that fall
outside of the threshold would be considered anomalous. Despite its incredible simplicity, this
algorithm is popular in various security applications. We chose to run initial experiments with the
centroid anomaly detector due to its low computation time, applicability, and its ability to be easily
comprehended and visualized. Its primary purpose is to be used as a baseline experiment to
demonstrate our approach.

We implemented this algorithm in Java and incorporated it into our API (discussed in section
3.2.4.1 Java API) for experimentation.

Approved for Public Release; Distribution Unlimited.
7

[]
e o ° -
o. 9
° 999 e Y
9 ")
- Q9 Q9 ge‘ °

Figure 4: Centroid Anomaly Detector

3.2.1.2 Hidden Markov Model. The next algorithm examined was the Hidden Markov Model. An
HMM is a machine learning model consisting of hidden states which follow the Markov property
and have associated initial and transition probabilities. In addition, an HMM consists of observed
variables, with each variable having a certain probability of occurring in each hidden state.
Sequences of observed variables are used to train the HMM and learn the hidden state and observed
variable probability matrices. Once learned, these probabilities are used to determine the
probability score of new test observation sequences. Figure 5 displays a visualization of an HMM.
Each arrow connecting an observed variable to a hidden state would have an associated probability,
as would each arrow connecting the hidden states. This algorithm was chosen again due to its
relative simplicity as well as its common appearance in ML-1DS research.

Approved for Public Release; Distribution Unlimited.
8

Observable States

Hidden States

Figure 5: Hidden Markov Model

We utilized the open-source Java library JAHMM implementation of HMMs to incorporate this
algorithm into our experimentation framework (discussed in section 3.2.4 Monte Carlo
Simulator) for initial experiments. Additionally, we identified two available ML-IDS which
implement and rely primarily on HMMs, SuStorID and HMMPayl, which are discussed in sections
3.2.2.1 SuStorID and 3.2.2.2 HMMPayl.

3.2.1.3 Support Vector Machine. The third algorithm investigated was the support vector machine.
An SVM is generally a binary linear classifier which classifies an object based on which side of a
dividing hyperplane it falls. The hyperplane is constructed to create maximum separation between
the two classes in the training set. In cases where the two classes are not linearly separable, a
kernel function such as the radial basis function (RBF), may be applied to map the data into a
higher-dimensional space. Figure 6 shows a simple example of an SVM in three dimensional
space.

Approved for Public Release; Distribution Unlimited.
9

9]
LN .
o °® ®
e
09 o ® o ©
® o °
2 Q
9 ® o
Q
p%o" o o
@Q []
A ;
o? (I
9 Q9 *
)
AR AW
@a Y
ee o e @

Figure 6: Support Vector Machine

Several variations of SVMs were described in the literature. The most common was the standard
linear binary SVM which separated “normal” data from “attack” data. Also, slight modifications
to this algorithm were proposed, such as the Robust SVM which introduces new slack terms to
address the over-fitting problem. In addition, an anomaly detection method, or one-class SVM,
was described which creates a hyperplane that separates the entire training set from the origin. If
an unknown point is separated from the origin then it is considered normal, otherwise it is
considered anomalous or an attack. Using SVMs to classify an unknown point as one of multiple
classes was also suggested. A series of binary SVMs are created, and then organized into a
decision tree. For example, an SVM may be created to separate classes A and B from C and D,
another one to separate A from B, and another to separate C from D.

As we had previously decided to focus primarily on anomaly detection algorithms, we chose to
investigate one-class SVMs. The LibSVM library implementation of SVMs was used to
incorporate this algorithm into the experimentation framework (discussed in section 3.2.4 Monte
Carlo Simulator). We also identified and experimented with an open-source ML-IDS called
MCcPAD, which utilizes one-class SVMs and is discussed in section 3.2.2.3 McPAD.

3.2.1.4 K-Means Anomaly Detector. As the research progressed, we additionally chose to
investigate the K-Means anomaly detection algorithm. This algorithm operates by first clustering
the training data using the K-Means clustering algorithm in the feature space. K-Means clustering
groups the training data into a set number of clusters, K, by first placing K centroids in the feature
space. Then, iteratively until a termination criterion is met, all points are assigned to the nearest
centroid, and the centroids are re-centered to the mean of the assigned points. After the cluster
centroids are determined using K-Means, a threshold bound is set around each such that a set
percentage of the training points lie within the threshold. At test time, a test point is assigned to
the nearest cluster centroid as is determined to either fall inside or outside of the threshold bound.
The point is classified as anomalous if it is not inside the threshold and normal if it is within the
threshold.

Approved for Public Release; Distribution Unlimited.
10

This algorithm is similar to the centroid anomaly detector, but the clustering step allows for
multiple centers of density within the training data. This algorithm was chosen for its common
occurrence in anomaly detection applications and its relative simplicity while still adding a layer
of complexity to the centroid anomaly detector. Also, we desired an additional distance-based
algorithm that operated in the feature space with which to test and verify our optimization methods
(section

3.2.1.5 Optimization Selection. The K-Means Anomaly Detection algorithm was implemented in
Java and incorporated into our experimentation framework (discussed in section 3.2.4 Monte
Carlo Simulator). The JavaML library was used to implement the K-Means clustering step.

3.2.2 Real World ML-IDS. A variety of real world implementations of IDSs that relied on ML
were identified. Three of these systems were successfully incorporated into our experimentation
framework (section 3.2.4 Monte Carlo Simulator) and used for model drift evaluation.

3.2.2.1 SuStorID. The first such system was SuStorID, an open-source host-based IDS for web
services which uses Hidden Markov Models to perform anomaly detection. SuStorID is written
in Python, utilizing the Django framework, and is coupled with the Apache-based ModSecurity
web application firewall to gather training data and provide real-time counteractions. SuStorID’s
models are trained using recent HTTP requests and can be retrained at any time using the tool’s
interface. We installed and configured SuStorID on an Ubuntu VM and began initial analysis of
the tool and its algorithms.

Approved for Public Release; Distribution Unlimited.
11

Anomaly-based Web Intrusion Protection System

Status Learn Detect Counteract Help

SuStorlD: Status Monitor

READY TO FIGHT WEB ATTACKERS.

Well done! Your system appears to be successfully configured. Anyway, you can enhance the level of

= protection by following the suggestions in Learn and Counteraction sections.
COMPONENT STATUS
Data Collection 6990 request samples available: max 100000 requests can be stored
Detection Engine Ready to detect web attacks: 55 active models

4 Counteractions

2 Suspicious Method Templates

2 Suspicious Web Application Templates

2 Suspicious Query Argument Templates

2 Suspicious Attribute Sequence Templates
2 Suspicious HTTP Version Templates

2 Suspicious Header Templates

6 Suspicious Header Input Templates

Counteraction Rules

Detected attacks 1 suspicious requests

Copyright (c) lgino Corona 2011, Pattern Recognition and Applications Group, University of Cagliari, ltaly

Figure 7: SuStorID’s user interface

3.2.2.2 Technologies Used. In order to test SuStorID, a web application was required to be placed
on the apache web server to be protected by the IDS. Initially a simple web page containing an
HTML form (Figure 8) was created to meet minimum requirements for SuStorID training
processing.

Approved for Public Release; Distribution Unlimited.
12

Mozilla Firefox

http://127....simple.html =

€ 127.0.0.1

& Most Visited v {_SuStorlD [} http://127.0.0.1/simp...

Enter a Value:
Secret page

Submikt

Figure 8: Simple HTML Test Page

We next incorporated SuStorIDS into our experimental framework (section 3.2.4 Monte Carlo
Simulator) to allow for the simple processing of end-to-end experiments. To support the training
process, automated generation of training data needed to be produced as well as an automated
means of creating and inserting drift and test points into the training datasets. Several approaches
were tried. Table 2 below provides a concise summary of each tool and how it was tried within the
experimental framework.

Table 2: Methods utilized during experimentation with SuStorID to generate training and
test data

Java based functional and performance testing tool which uses XML to specify
the interfaces to automate testing. It can be used to test Web (HTTP and
HTTPS), SOAP/REST, FTP, and database via JDBC, LDAP, Message-oriented
middleware (MOM) via JMS, Mail (SMTP, POP3 and IMAP), MongoDB
(NoSQL), Native commands or shell scripts, TCP.

Was too slow for large volume of training dataset traffic generation, but it is
used to initiate the training sequence for SuStorID due to the high level of
control provided with the simple XML format it uses.

Used the HTTP libraries to create and send HTTPRequests.

This is the method finally used to generate the traffic to be used in the training
Java datasets due to the ease with which new data can be generated quickly while
maintaining prefect control over the contents of the packets. This is key in
isolating the one pertinent feature examined in the experiment.

Java use of JDBC libraries to add rows to DB storing traffic in order to add
requests.

JMeter

Edit DB tables

Approved for Public Release; Distribution Unlimited.
13

This was tried and replaced due to the performance impacts of coordinating
several steps such as: locking and unlocking the tables; shutting down and
bringing up the IDS; monitoring the IDS to make sure the locking and

shutdown/restart steps occurred after all requisite traffic had been received.

Using a modeled HTTPRequest inside a PCap (network packet capture) file to
be a template for generated traffic for training data, insertion data and test data.
This method was tried and held for use later in the examination of other IDS’s.

Editieplay PCaps For the purposes of SuStorID it was very slow performance due to the PCap
editing software and the PCap replay software currently being so slow to
execute with faster options available.

Wireshark comes with a host of tools for manipulating PCaps files. Mergecap is

Mergecap one used to merge multiple packets from 2 or more PCap files into one larger

PCap file for ease of processing. Some IDSs required the training data to be in
one large PCap file for one or more steps.

Mechanize-per

Perl scripts using HTTP library to generate HTTPRequests.

This was used after a more comprehensive website based upon WordPress
was developed as a more realistic web application for testing. When SuStorID’s
unreliability became an issue for the more realistic website, this approach was
abandoned as not needed any longer.

Scripting to click through on the browser to generate traffic for training.
Very slow execution as it ran in a browser and would not have been usable for

Selenium later tests proposed to be run on the HPC cluster due to its reliance on a GUI in
the form of the web browser.
Scripting to click through on the browser to generate traffic or training.

Apache Bench (ab) Would not install properly, nothing accomplished with it. This is a risk with Open
Source Software.
Great large volume of traffic generated, not enough control of what precisely

Httperf was IN the traffic to be usable for selective creation of insertion and test points.

P We required control over every feature examined by the IDS and some of them

were not accessible using Httperf

Tsung Too complicated to configure and make work for multiple types of traffic.

s Sl Too slow and resource intensive resulting in averaging one HTTPRequest
generated per second.

HTTPReq Generator Missing functions for execution to work. Did not provide the function to specify

some features monitored by IDS.

Metasploit (from Kali
Linux)

An easy way to generate web server HTTP traffic is to use Metasploit to run the
WMAP module. WMAP probes the server port which can rapidly generate
thousands of packets using the available interface. These packets are
essentially scripted so are only useful for generating the bulk of the normalized
traffic, but not the specific insertion and test traffic.

3.2.2.3 HMMPayl. The next ML-IDS investigated was HMMPayl. HMMPayl is an open-source
network IDS, written in Java, and developed by PRA Lab. It utilizes HMMs trained using the
Baum-Welch algorithm to detect anomalous packets. HMMPayl inspects network packet payloads
represented as byte strings, using a sliding window to extract n-grams from these byte strings, and
uses these n-grams as the feature set to train its models. In an effort to increase classification

Approved for Public Release; Distribution Unlimited.
14

accuracy, HMMPayl uses an ensemble of HMMs, combining the results from each to make its
predictions. Figure 9 outlines the architecture of HMMPayl.

*9® Sequences
o HMM 1 < Probabilities »
Fusion
o0 e . Payload
' b S ¢ Sequences Multi =
Payload =+ s;;‘::g;? # HMM2 $ Probabilites 9 Classifier Probg:lllty
Fusion
System (jass Label
L X X | Sequences
% HMMK & Probabilities =
Fusion
Eattern Andlysis Classification

Figure 9: HMMPayl process overview

In order to facilitate experimentation with HMMPayl, we first incorporated it into our framework
(section 3.2.4 Monte Carlo Simulator). Since HMMPayl is written entirely in Java, as is our
framework, this task was simplified. The key parts of the ML-IDS are the ML model training step,
and the test step. The code responsible for these tasks was located in HMMPayl’s source and
extracted to our own class. This code relies on the existence of a PCap file for training and then
either monitors traffic for testing, or uses a separate testing PCap file. In order to support this
training and test process, a method for the automatic generation of packets needed to be produced.
We reused the code developed for experimentation with SuStorID to send custom HTTP requests
that were then collected into PCaps and used for training/testing. HMMPay!| uses the jpcap library
to capture packets, create PCaps, and to parse them to create its training and test sets. A bug
existed in the jpcap library utilized by HMMPayl that was causing errors during processing. The
issue was fixed by modifying jpcap’s native C code and re-making the files. Additionally,
HMMPay!’s Java code was modified because it did not properly close its captors after it was done
with them, which was leading to errors during iterative experiments. This allowed for initial end-
to-end experiments to run successfully.

The method of creating the training sets by sending custom HTTP requests and capturing the
packets proved to require too much processing time in order to effectively run iterative
experiments. Even if working directly with existing PCaps, processing the files and extracting the
packet payloads was computationally expensive. However, examining the code revealed that all
HMMPay! uses to train its models are the byte strings that make up the packets payloads, which
are just sequences of numbers. We therefore stripped out the code from HMMPayl which
processes the PCaps and extracts the packet payloads so that it could work directly with lists of
numbers. This allows us to extract the payloads from our training files prior to the experimental
runs, and crafting insertion points becomes as simple as creating lists of numbers. This makes

Approved for Public Release; Distribution Unlimited.
15

training more dynamic, as we can more easily choose which points from the training set to utilize
and can store the training sets in other formats such as CSV or in a database.

Additionally, HMMPayl’s original code required the trained HMM models to be saved to a file
after training, and then reloaded each time a new point was tested. This repetitive file 10 led to
increased computation time and slowed down iterative experiments. Therefore, we modified
HMMPayl’s source code to store the trained HMM models in memory, saving significant time
during experimental runs.

3.2.2.4 McPAD. The next ML-IDS analyzed was McPAD (Multiple classifier system for accurate
Payload-based Anomaly Detection), another open-source network IDS written in Java and
developed by PRA Lab. McPAD is a breed of ML-1DS which analyzes the payloads of web traffic
it is monitoring. This analyzed payload is within the application layer of the OSI model. The
analysis tries to establish whether or not the payload is malicious assuming that the byte
distribution of a malicious payload differs from that of a normal payload. McPAD uses a 2 nu-
gram analysis of the payload byte distribution when building the models to use for discriminating
new incoming normal payloads from potentially malicious ones. This analysis is an approximation
of the n-gram analysis commonly used in text-classification. A 2 nu-gram consists of two bytes
from the packet payload byte string that are nu bytes apart. A sliding window across the payload
is used to find all of the 2-nu grams. These are then clustered to decrease the feature set size from
2562 dimensions down to a specified number of dimensions (160 by default). Using the paradigm
of Multiple Classifier Systems, McPAD leverages an ensemble of Support Vector Machines to
perform the processing of both model development and intrusion detection using the 2 nu-gram
analysis of byte distribution in payloads of incoming traffic to the webserver or hosted web
applications it is protecting. McPAD trains multiple SVM models utilizing different values of nu
for each when building its 2 nu-grams and combines the results of each at test time. Figure 10
presents a simplified overview of McPAD.

McPAD

N
| Feature Extraction
and Reduction
N

PAYLOAD —» label

Figure 10: McPAD process overview

Approved for Public Release; Distribution Unlimited.
16

The first step towards analyzing McPAD’s susceptibility to model drift was to incorporate it into
our experimental framework (section 3.2.4 Monte Carlo Simulator). Like HMMPayl, McPAD
is also written entirely in Java, so this task was again simplified. The code responsible for training
and testing the SVM models was located in McPAD’s source and extracted to our own class. This
code extracts data from a PCap file to train its models and then either tests monitored live traffic
against the models, or uses a separate test PCap file. In order to support this training and test
process, we needed to produce a method for the automatic generation of packets. We reused the
code developed for experimentation with SuStorID to send custom HTTP requests that were then
collected into PCaps and used for training/testing. McPAD also relies on the use of the jpcap
library, so again the bug in jpcap’s native C code had to be fixed. Several other modifications to
MCcPAD’s source code were also necessary in order to properly process end-to-end experiments.
The original McPAD code would shut down any time a packet was encountered that it could not
cast to an IP packet, which occurred often. The code responsible for this was located and modified
to continue processing. Additionally the code was edited so that during live monitoring, McPAD
would actually use the network interface controller (NIC) specified rather than always using the
second one in the device list. Also, like HMMPayl, McPAD did not properly close its captors after
it was done with them, which was leading to errors during iterative experiments. This was fixed.
Code was also added so that during testing, the probability score of the packet with the lowest
probability score was tracked. This is because a single “test point” may span multiple packets,
and if a single packet fell below the anomaly threshold, then essentially the test point was detected.
These modifications allowed us to run initial experiments.

The method of creating the training sets by sending custom HTTP requests and capturing the
packets again proved to be too computationally expensive to effectively run iterative experiments.
Similar to HMMPayl, however, McPAD only requires the byte string from the packet payloads to
train its models. We therefore stripped out the code from McPAD which processes the PCaps and
extracts the packet payloads so that it could work directly with lists of numbers representing the
byte strings. This allows us to extract the payloads from our training files prior to the experimental
runs, craft insertion points by simply creating lists of numbers, dynamically create training sets,
and store training sets in a variety of formats.

Additionally, McPAD’s original code required that the training data (after 2 nu-gram analysis), the
feature cluster information, and the SVM models were all saved to a file during training. The
cluster information and the SVM models then had to be reloaded at test time. During iterative
experiments, this repetitive file 10 added unnecessary computation time. Therefore, we modified
McPAD’s source code so that this information was all stored in memory during experimental
iterations, increasing the speed of experiments.

3.2.2.5 PESCAN. Another ML-IDS investigated was PESCAN, a malware analyzer developed by
BAE Systems. PESCAN uses a byte scanner to detect executable code embedded in network
traffic and inspects its structural properties for patterns indicative of malicious executables.
PESCAN is incorporated into the Suricata framework, a popular open-source network IDS
developed by the Open Information Security Foundation (OISF). To perform the learning system
training phase, PESCAN analyzes portable executable meta-data for structural features, numerical
properties, and import lists. It trains decision trees, a popular ML algorithm, using the feature
criteria mentioned above, and utilizes them for the classification of traffic as malicious or not.
PESCAN examines portable executables found in the traffic and processes them to compute a
PEScore (risk metric) in order to aid in identifying portable executables that are likely to be

Approved for Public Release; Distribution Unlimited.
17

malicious. We installed and configured PEScan on an Ubuntu VM. However, due to limited access
to useable data and the significant difference in the type of data this ML-IDS monitors from the
others studied, we did not find time to further experiment with it during this period of performance.

3.2.2.6 Additional. As ML-IDS is still a new and emerging technology, few actual
implementations, particularly open-source implementations, are currently available for
experimentation. During our research, however, we identified several applications of ML for cyber
security purposes which were either open-sourced or in use by corporations. These technologies
are summarized in Table 3. We did not further explore these applications under this effort because
their implementations/code were not made available to us or because they were deemed less
appropriate / lower priority than those discussed in the previous sections and time did not allow it.
They do, however, provide compelling evidence that machine learning is becoming more prevalent
in cyber security and further justify our research.

Table 3: Machine learning cyber security applications identified but not further researched

Application

Description

Clonewise

Utilizes Random Forest classification to detect package clones and infer security vulnerabilities
from those clones that are out of date. Used by Debian Linux.

Zozzle

Tool developed by Microsoft Research to perform static analysis of JavaScript code on a site and
determine whether or not it is malicious. Uses Bayesian classification.

MLIDS

The Machine Learning Intrusion Detection System (MLIDS) is a tool funded by the DoD to detect
attacks against High Level Architecture (HLA) and Distributed Interactive Simulation (DIS)
simulation environments. Uses Support Vector Machines.

Nova

Creates a set of honeypots, and then uses ML to identify patterns of hostile network traffic. Uses
K-Nearest Neighbors for classification.

ORCA

Oak Ridge Cyber Analytics (ORCA) is a suite of tools that include ML capabilities for analyzing
network traffic to detect zero-days and other attacks and for distinguishing the real attacks
highlighted by IDS alerts from expected events. Funded by Lockheed Martin and was included in
their experimental Defense and Self-Healing Network.

HMM-Web

Developed by PRA Lab to detect server side attacks against web applications. Uses an ensemble
of Hidden Markov Models to detect anomalies.

TotalADS

The Total Anomaly Detection System (TotalADS) is a framework for detecting host-based
anomalies. Analyzes execution traces and log files using Sequence Matching (SQM), Kernel State
Modeling (KSM), and Hidden Markov Models.

Cynomix

Tool developed by Invincea and funded by DARPA to analyze malware and detect malicious
programs. Uses ML to compare the similarity of unknown programs to known malware strains.

CylancePROTECT

Endpoint security tool developed by Cylance that uses ML to detect and prevent the execution of
advanced malware and persistent threats. Collaborating with Dell to be integrated into the Dell
Data Protection | Endpoint Security Suite Enterprise.

Exabeam

Platform developed by Exabeam performs user behavior analysis using unsupervised ML. Uses
anomaly detection to detect cyber-attacks and insider threats.

3.2.3 Optimization Selection. In order to properly test our approach for measuring the
susceptibility of ML-1DSs and their associated algorithms to model drift, we had to first develop
a method to find the value of x which maximizes g(xo)l+x - g(x0)I s.t. g(x)I >y (Figure 1). That
is, we wanted to develop an optimization algorithm to automatically generate the point which when
added to the training set, causes the greatest amount of drift in the resulting ML model towards the
desired test point. We initially developed optimization algorithms and heuristics that were based
on detailed knowledge of the ML algorithms under study. However, these optimization

Approved for Public Release; Distribution Unlimited.
18

approaches, while reasonably effective, required a thorough study of the ML algorithms and were
generally only applicable to a single ML algorithm. This required an understanding and a time
investment that a researcher may not have in a realistic environment. Therefore, to make our
methodology more generic and applicable to future ML algorithms, we began to study universal,
heuristic-based optimization approaches that were ML algorithm independent. The optimization
approaches we studied and developed, both ML algorithm dependent and independent, are detailed
in the following sections.

3.2.3.1 Centroid Anomaly Detector Optimization. The approach for generating the point which
optimally drifts a centroid anomaly detector toward a target point is relatively straightforward and
is, in fact, mathematically provable. The adversary determines the vector between the target
anomalous point and the current centroid and inserts a point along this vector at a distance from
the centroid equal to the anomaly threshold value. This approach is illustrated in Figure 11.

Target Point

i T ‘-._:;
- -~
-
\.\ .

Insertion Point \\

Figure 11: Illustration of optimal drift strategy against a centroid anomaly detector

This insertion point will appear normal, due to falling within the anomaly threshold, but upon
retraining of the ML model will drift the centroid in the direction of the target point.

3.2.3.2 K-Means Anomaly Detector Optimization. A similar approach was developed for
generating the point which optimally drifts a K-Means anomaly detector towards accepting a target
point as normal. The adversary determines the cluster centroid that is nearest to the target point,
determines the vector between the centroid and the target point, and inserts a point along this vector
that is a distance away from the centroid equal to the anomaly threshold value. This causes an
effect similar to that induced on the centroid anomaly detector. Upon retraining, the cluster is
drifted towards the target point, until the point is eventually no long classified as anomalous.
Additionally, the insertion points will appear normal due to falling within the threshold bound of
the cluster.

3.2.3.3 HMM Optimization. Through an investigation of HMMs, we developed a fast method to
determine the near-optimal points for inducing model drift. Since the sequence probabilities
returned by an HMM are largely driven by the frequency of individual symbols in the training set,
we chose to focus our approach on these frequencies. We wanted to target the specific n-grams
from the test point that contained symbols common in the point but that also had low probabilities,
meaning that they likely contained symbols uncommon in the training set. Therefore, to create the

Approved for Public Release; Distribution Unlimited.
19

adversary’s insertion points, for a set number of iterations we iteratively added symbols to the
insertion point according to the equation below where T(x) is the number of times symbol x occurs
in the test point and Tr(x) is the number of times x appears in the training set.
o argmax T(x)
X Tr(x)?

Then, if the constructed insertion point is considered anomalous by the existing model, symbols
in the point are iteratively replaced by the symbol occurring most frequently in the training set
until the point is no longer flagged.

During our experiments with HMMs, various other optimization approaches were tested but were
determined to be less effective for various reasons. These approaches are described in Table 4.

Approved for Public Release; Distribution Unlimited.
20

Table 4: Optimization strategies examined for generating optimal drift points for HMMs

Method

Explanation

Issues

Genetic algorithm. Fitness function is
defined as the increase in test score of the
test point when adding insertion point to
the training set and retraining. Tried
various methods including different
mutation/cross-over methods and a
variation that allowed for variable length
solutions.

Popular and easy to implement
machine learning optimization
method. Itis generic and
requires little prior knowledge of
the ML algorithms.

Requires retraining the model for each
fitness calculation. This takes far too long
for large data sets. Was not producing
great results in a reasonable amount of
time.

Particle Swarm Optimization. Fitness
function is defined as the increase in test
score of the test point when adding the
point to the training set and retraining.

Popular and easy to implement
machine learning optimization
method. It is generic and
requires little prior knowledge of
the ML algorithms.

Requires retraining the model for each
fitness calculation. This takes far too long
for large data sets. HMMs consider
individual character frequencies so
distance between points is irrelevant,
making this approach not highly effective
for this purpose.

Test all permutations (with replacement) of
the test point and find the one that has the
lowest test score while also being above
the anomaly threshold. If there isn't one
above the threshold, replace one of the
values with a random value from the
training set.

Does not require retraining the
ML models. HMMs consider
character frequencies so
designed to increase frequency
of characters in test point.

For large test points, the time to test all
permutations is much too high.

Incrementally add the character from the
test point that occurs the least in the
training set until the point is the length of
the average point from the training set. If
the point is detected, iteratively replace a
character in the point with the most
frequently occurring character in the train
set.

Assumes full knowledge of the
training data. Approach is based
on character frequencies while
not requiring testing all
permutations of test point.

Often the character from the test point
which occurs the least frequently in the
training set also occurs infrequently in the
test point. This means that it will occur in a
small number of n-grams and have a small
effect on overall probability of the point.

Incrementally add the n-gram with the
lowest score from the test point. Score in
calculated for an n-gram by summing the
difference in number of occurrences in the
training set and the test set for each
character in the n-gram. If the point is
detected, iteratively replace a character in
the point with the most frequently occurring
point in the train set.

HMMs consider sequences of
characters, so an approach
which adds sequences with low
probabilities to the test point
could improve results. The
selected scoring method seemed
to correlate with n-grams that
had low probabilities yet
contained common characters in
the test point.

Experimental results were actually
considerably worse than using selected
method.

3.2.3.4 SVM Optimization. During our experimentation with SVMs, we developed a method to
quickly determine the insertion point which will have the near-optimal drift effect. The SVM
implementation that we chose utilized a Gaussian kernel, so the score of a test point is largely
driven by its distance from the support vectors in the input space. Additionally, not all training
points are considered support vectors, so we must attempt to ensure that the insertion point is
chosen as a support vector in order to have an effect on the test score. With these factors in mind,
we developed an initial method to generate insertion points that relies an in-depth knowledge of
the SVM. For our chosen approach, we find the support vector nearest to the target anomalous

Approved for Public Release; Distribution Unlimited.

21

point and insert the point along the vector between the two that is closest to the target anomaly
without being flagged as anomalous. This method proved to be effective during initial experiments
with training data sampled from a Gaussian distribution. However, it did not appear to extrapolate
well to alternate data distributions.

During our experiments with SVMs, various other optimization approaches were tested but were
determined to be less effective for various reasons. These approaches are described in Table 5.

Table 5: Optimization strategies examined for generating optimal drift points for SVMs

Method Explanation Issues
Particle Swarm Optimization. Fitness Popullar i casy - '.mP'e‘T‘e”t . .
N . . machine learning optimization Requires retraining the model for each
function is defined as the increase in test : ; . , . .
. . method. It is generic and requires | fitness calculation. This takes far too long
score of the test point when adding the , .
) o S little prior knowledge of the ML for large data sets.
point to the training set and retraining. algorithms

In the kernel space, find the point that is
closest to the test point which also lies on
the separation plane defined by the alpha
values and the threshold. Then use particle
swarm optimization to find the point in the
input space which when kernelized lies
closest to this point and is classified as
normal.

Does not require retraining the ML
models. The goal was that this
point would push the separation
plane in the direction of the test
point the furthest.

When adding the point to the training set,
it is not selected as a support vector
during training, so has no real effect on
the model.

3.2.3.5 Universal Optimization. While the algorithm-specific optimal point generation algorithms
that we developed were relatively effective, we wanted to develop an approach that was more
universal and able to quickly test multiple ML algorithms without requiring a deep understanding
of their details. This would make our methodology for measuring the susceptibility of ML
algorithms to model drift much more applicable to future algorithms we wish to analyze. For this
reason, we investigated heuristic based optimization methods. Heuristic methods make few
assumptions about the problem being optimized and can generally search large spaces of candidate
solutions. These methods require a custom fitness function, or a measure of how good or
applicable a potential solution may be. In order to make sure our implementations remained
algorithm-independent, we wanted to develop a fitness function that relies only on knowledge of
the resulting test scores of the target point and thresholds of the algorithms. Another benefit of
these heuristic methods is that they do not require this fitness function to be differentiable.

3.2.3.5.1 Fitness Functions. We developed several different fitness measurements during our
experimentation. The first that was relatively successful was to use the resulting test score of our
target point after retraining the ML models with the potential point inserted into the training set.
The optimization algorithm would then find the point that when added to the training set,
maximized the score of the target point. While testing this method, however, we found that it was
often the case that while the resulting test score of the target point would increase, the anomaly
threshold would often increase at a nearly equal rate. This meant that the classification of the
target point would never change, and it would remain anomalous to the ML models. To remedy
this, we designed a fitness function that would use the difference between the resulting score of
the target point and the resulting threshold. The algorithm would then find the point which
minimized this gap to ensure that while the test score was increasing, the target point also appeared
less anomalous to the ML models. If a point was found that caused the test score to become larger
than the anomaly threshold, then it was selected automatically. If the test score of the potential

Approved for Public Release; Distribution Unlimited.
22

insertion point made it appear anomalous to the existing classifier, then it was given a score of 0
and no longer considered. This method had improved results during experimentation.
Additionally, it had the interesting side-effect that often the points being generated would focus
primarily on lowering the anomaly threshold rather than increasing the test score of the target
point.

3.2.3.5.2 Particle Swarm Optimization. The first heuristic based optimization approach that was
used to automatically generate insertion points to induce model drift was Particle Swarm
Optimization (PSO). PSO is an evolutionary algorithm that works by placing a certain number of
particles (candidate solutions) into the feature space which then, for a certain number of iterations,
travel to new locations searching for an optimal solution. Each particle’s movement is dictated by
mathematical calculations based on the particle’s position and velocity, the best point seen by the
particle, and the global best point seen by any particle. We chose this algorithm due to its wide-
spread use and popularity and its proven success in a variety of optimization problem spaces. We
utilized JSwarm, an open source Java library, and its implementation of PSO during our
experimentation. The fitness function described above was implemented and used to measure the
fitness of candidate points during the experiments. This optimization approach allowed for some
success in initial experiments. However, it was noted that this approach would not be the most
effective for algorithms like HMMs where the distance between points in the feature space is not
highly correlated to test scores. The non-convexity in the feature space meant that this approach
may not optimally converge to a solution as designed.

3.2.3.5.3 Genetic Algorithms. We next investigated genetic algorithms (GA) as a heuristic
approach to generate points that optimally induce model drift. GAs are another evolutionary
approach that attempt to mimic the process of natural selection. GAs begin with an initial
population of potential solutions, stochastically selects the most fit members, combines these
members in a process known as crossover, and introduces random mutations. This process of
selection, crossover, and mutation is repeated iteratively for a set number of iterations or until an
acceptable solution has been found. We chose GAs because they are a very widely used heuristic
method and have proven success in a variety of optimization domains. Additionally, they appear
to be less specialized than PSO, meaning that while GAs may be less suitable for some
applications, they are more effective for a wider variety of problems. Therefore, they allow us a
more universal approach, applicable to a variety of ML algorithms. During our experimentation,
we implemented our own version of a genetic algorithm in Java. We chose to use fitness
proportionate selection (roulette wheel selection), two point crossover, and random mutations. We
also chose to ensure that the fit member from any population is guaranteed to make it to the next
generation unchanged. We experimented with a number of different mutation rates and crossover
rates and different mutation methods such as decreasing the mutation rate as the number of
iterations increases and decreasing the mutation range as the number of iterations increases.
Additionally, we developed and experimented with custom mutation and crossover techniques that
allowed our population to be made up of members of varying lengths.

One of the major drawbacks of GAs is the computational time required to repeatedly evaluate the
fitness functions. Particularly in our case, our chosen fitness function requires retraining ML
models, which is an intensive process. In an attempt to mitigate this, we investigated Adaptive
Fuzzy Fitness Granulation (AFFG). AFFG maintains a list of fuzzy granules, or groups of similar
points whose fitnesses have already been computed. If an individual is sufficiently similar to one
of these granules according to a fuzzy similarity analysis, then it is simply assigned the fitness of

Approved for Public Release; Distribution Unlimited.
23

the granule. Otherwise, its fitness is calculated and a new granule is created. This cuts down on
the number of explicit fitness calculations that must be processed. During our experimentation,
we implemented AFFG in Java and incorporated it into our GA code.

3.2.3.5.4 Nelder-Mead Method. We additionally investigated the Nelder-Mead method as a
heuristic approach for generating points that optimally induce model drift. In n dimensions, the
Nelder-Mead method creates a simplex arranged of n+1 candidate solution points. It then
iteratively replaces the point that has the lowest fitness with a point reflected through the centroid
of the simplex. It also either expands or contracts along this line to either stretch of shrink the
search space depending on the fitness of this reflected point. This has the effect of replacing
“lower” points with “higher” points, moving the simplex “uphill” towards the best solution and
contracting at the top rather than sliding back down. This algorithm was chosen because it is
another popular and widely used technique. Also, it tends to require fewer fitness calculations
than a GA, greatly decreasing the amount of required computation. During our experimentation,
we implemented the Nelder-Mead method in Java. We also ran experiments utilizing the Apache
Commons implementation of the algorithm. It was noted, however, that the Nelder-Mead
algorithm tended to have similar weaknesses to PSO. In a non-convex feature space, the algorithm
may not converge to an optimal solution.

3.2.3.5.5 Simulated Annealing. As the other heuristic optimization methods that we explored did
not produce as optimal of solutions as we believed were possible, we next investigated Simulated
Annealing (SA). SA choses an initial state (candidate solution), then iteratively selects a
neighboring state and probabilistically decides to remain in the current state or move to the new
state. This acceptance probability is based on the fitness score of the two states and the current
temperature. The temperature decreases over the iterations, causing the algorithm to be less likely
to select states with lower fitnesses in later iterations. In the early iterations, however, SA may
select a state with a lower fitness in order to avoid local maximums. During our experimentation,
we first used JAnnealer, an open source Java implementation of SA, but it did not offer all of the
functionality that we required. Instead, we next used the AIMA3e library, an open-source Java
library containing various optimization algorithms. In order to improve its implementation of SA,
we modified it so that during optimization iterations, the best solution encountered was remember
throughout, and returned at the end.

3.2.4 Monte Carlo Simulator. As mentioned above, we designed and developed a Java API and
prototype GUI that were used to implement our framework and methodology and facilitate
experimental runs. We chose to design our framework around Monte Carlo simulations, which is
an experimental method that relies on repeated random sampling. This helps eliminate data
specific results by finding averages across multiple runs, decreasing the variance in our results. To
this end, an API was created, described in the next section, with interfaces that allow for simply
running Monte Carlo experiments and adapting new algorithms and data sources for testing.

The framework allows for experiments to be run to identify precisely what effort an adversary
would need to expend in order to force a misclassification on the selected test point through model
drift created by the introduction of crafted insertion data into the training set. These experiments
may be repeated for varying training set sizes, different percentages of control the adversary has
over the retrain data, and varying algorithm-specific parameter values. For each configuration,
multiple iterations are run with randomly sampled data from the selected data source and the results
are aggregated and placed into graphs for further analysis. This provides the user with an overall

Approved for Public Release; Distribution Unlimited.
24

picture of the resistance of the algorithm to adversarial drift and may be used to compare
algorithms.

3.2.4.1 Java API. The API was designed to be flexible, allowing us to test various functionalities
using Monte Carlo simulations with a variety of machine learning algorithms and data sources.
The API was written primarily in Java due to its object oriented design, its abundance of existing
libraries, and the team’s skill set.

An abstract class, Algorithm, was created which contained the majority of the functionality
required to implement a machine learning algorithm and begin testing with it. To implement an
algorithm, the user simply must extend this class and implement the train, test, and classify
methods. The train method receives a training set as a parameter in the form of a List of Lists of
Numbers, which it will then use to create its learning models. The test method receives a single
test point in the form of a List of Numbers, which it will then test against the learned models, and
return a numerical test score. The classify method receives a single test point which it will compare
against the learned models, and return either a O or a 1 indicating whether or not the point is
anomalous. During our experiments, classes were created that extended this Algorithm class to
implement each of the algorithms identified in section 3.2.1 Algorithm Selection as well as the
IDSs SuStorID, McPAD, and HMMPayl.

An abstract class, DataStorage, was created to handle the functionality of storing data and making
it available to the algorithms for training and testing. To implement a DataStorage, a user must
extend the abstract class and implement the getRandomPoints and getAllPoints methods. The
getRandomPoints method returns a given number of points randomly selected from the data source
in the form of a List of Lists of Numbers. Its purpose is to allow for repeated Monte Carlo
simulations which call for randomly selected training data sets. The getAllPoints method returns
all of the points from the training set in the form of a List of Lists of Numbers and is designed for
instances where randomness is not desired. During our experimentation, we implemented a
number of different DataStorages. Table 6 details the different data sources that we were able to
pull from using our DataStorage implementations.

Table 6: Data sources implemented and incorporated into Java API

Data Source Explanation

Generates points of a given dimensionality containing numbers sampled randomly from
a Gaussian distribution with a given mean and standard distribution.

Loads a given file containing points (one per line) made up of numbers separated by a
given delimiter. Capable of returning random points from the file or all of them.

Loads a given file containing strings (one per line) which it converts to Lists of Numbers
Strings From File based on the ASCII values of the characters. Capable of returning random points from
the file or all of them.

Pulls data from a given SQLite database using JDBC. Assumes the database contains a
table which has two columns, an ‘id’ column which contains incrementing row numbers
SQLite Database beginning at 1, and another column which contains data points which are numerical
values separated by a given delimiter. Capable of returning random points from the
database or all of them.

Loads a given PCAP file and extracts the payload from each packet as a byte string.
PCAP Files Uses these byte strings, represented as Lists of Numbers, as the points. Capable of
returning random points or all of them.

Normal Distribution

Character Delimited Files

Approved for Public Release; Distribution Unlimited.
25

In order to run a variety of model drift experiments, we implemented a MonteCarloSimulator class
which requires only an Algorithm and a DataStorage. This class offered multiple functionalities
which are summarized in Table 7.

Table 7: Functionalities offered by MonteCarloSimulator class in Java API

Method Explanation Purpose
For a given number of iterations: Train the algorithm using | Determine on average the test score
. a randomly generated training set from the data storage, of a particular point. Tests the
Train and Test : . .)) o
and then test a given test point against the resulting consistency of the classifier when
classifier. trained on varying training sets.

For a given number of iterations: Train the algorithm using
a randomly generated training set from the data storage,
and test a given test point against the resulting classifier. Tests the model drift effects of the
Then add given insertion points to the training set, retrain, | given insertion points.

and recalculate the score of the test point. Also has option
to add additional random points during retraining.

For a given number of iterations: Train the algorithm using
a randomly generated training set from the data storage,
and test a given test point against the resulting classifier.
Then add one of the given insertion points, retrain, and test | Tests the model drift effects of the

Train and Retrain

the test point again. Iteratively repeat, adding each given insertion points over time.

Additive Retraining insertion point to the training set. Record score of test point | Simulates the low and slow approach
after each insertion point is cumulatively added to the that would cause an anomalous point
training set. Also has option to add additional random to gradually appear normal.

points during retraining iterations. Also has the option to
calculate the ‘optimal’ insertion points rather than use a

given list.

For the given number of iterations: Train the algorithm Determines the amount of effort an

using a randomly generated training set from the data adversary would need to put forth in
Add Optimal Until storage. Then calculate the ‘optimal’ insertion point, insert | order to force a misclassification on a
Misclassification it into the training set, retrain, and test the test point. given test point. Gives a

Repeat this until the test point has a score such that it measurement of how secure the

would not be classified as anomalous. classifier is to model drift.

The API also allowed for the simple inclusion of multiple optimization algorithms, which are used
to calculate the point which induces the greatest amount of model drift in the direction of the test
point when added to the training set (Figure 1). The optimization approaches detailed in section
3.2.6.

3.2.4.2 Optimization Selection were each implemented, and generally required only an Algorithm,
a DataStorage, and any optimization algorithm specific parameters. Figure 12 shows a segment
of the class diagram for the API and gives an overview of the class structure.

Approved for Public Release; Distribution Unlimited.
26

<<Java Class>> <<Java Class>>

montecario test ceniroid maonlecario lesthmm
i F <cJava Class>> <<Java Class>>
ey @MNormalDistribution Storage (@ DataFromSQLiteDatabase Storage
© addPoi o wid | | & double boolean) montecarlo fest moni
© train{List<List<humber>>)void © train(List<List<Number>>) void stionStorage() @ DataFromSQL iteDatabaseStorage(String)
& testPoint{ListNumber> :double @ testPointiList<Number>}-double tionStorage(double, double) i SQLiteDatabase Storage(String, String)
o fyPoint(int . f Jint ble, double.int) DataFromSQLiteDatabaseStorage(String, Sting String String)
om: extends List<hu ® getRandomPaints(int) List<? extends List<Number>>
4 p ends List<Number>> @ getAlIPoints() List<List<Number>>
i set @ getamef) String
 sethame(Sinng) void
: oid @ toString() String
/ N,
v L
<§|m Class>> <<Java Class>>
Ao ""'"' (®MontaCarloSimulator
- il montacarto 3
<o) FhonteCarloSimulator]) AN

& MonteCarloSimulator{Algorithm)
& MonteCarloSimulator(DaiaStorage)
F lator(Algarithm DataStorage)

> DataOutputPanel) TrainResuhSet
st<List<Number>>) TrainResultSet

T I tastEfect

List<Number>}

o testEfect ListeList< DataOutputPansl) RetrainResukSet [X]
o testEfect > Listel > DataOutputPanel) RetrainResutSet

e mputy(St Ofyect o testEfect DataOutputPansl)

© setProperty(String Object) void s o

 addProperty(String Object) void

List<Property<Object>>

ResutSet

bl © setDisplayPansi{DataOutputPanel)void
© getDisplayPansi() DataOutpuPanl

© properties () AnayList <Property<Object=>
© hasThrashold():boolean

© seiDisplayPanelDataOutputPanel) void
DataOutputPanel

i

& gatDataStorage() DataStoraga
& setDataStorage{DataStorage) void
& setStoreTranSets{boolean) void

= . DataQutputPane!) void
 calculateStatistics(double(][[].DatsOutputPanel) void

<<Java Class>>
@ Particle SwarmOptimizer
aptimization psa

& ParticleSwarmOptimizer()

aptimize(Algorithm,DataStorage, intint, double(]. doublef].List<Number> boolean List<Number>
& . double] doudle{].L boolean,boolean) List<Number>

& y(DataOutpy void

& op()void

Figure 12: Segment of Java API class diagram

3.2.4.3 GUI. A prototype GUI was developed in Java in order to expedite experimental runs using
our API. The GUI was designed to support all of the functionality of the MonteCarloSimulator
class while allowing the user to quickly customize all of the experiment parameters. The GUI
displays a panel which allows the user to select an implemented ML algorithm and a data source
and insert any algorithm or data source specific parameters. Another panel exists which allows
the user to enter or load specific test points and insertion points to use during testing. A third panel
allows the user to run any of the functions listed in Table 7 and choose specific parameters such
as the number of iterations to run and the size of the training set. It also has an option to bring up
a graphical display of the results. A collapsible panel at the bottom displays experimental progress
and textual output. The GUI supports the ability to save/load experimental setups, so that
experiments can later be loaded and modified or rerun/validated. Additionally, experimental
results may be saved to a file in CSV format. Figure 13 displays a screenshot of the GUI.

Approved for Public Release; Distribution Unlimited.
27

[— 10/.£ Mumber of tterstions

[Remeove Point |

: : o 1,000 Husrbier of Poirts

[Clear Testimt | I frnclomm Datn

Rty Additive Retraining] Use Optimization
Oata Types [Cimoort | 10}]| Number of Iterations
— ey Dratm
[Pavioads from Fie Ingection Points Use Full Dataset
[Parvlesets, from Database]
@ Rarndom Data 1,000 Pumiber of Points

| clear gecton st |

Train : 3 of 10 ‘

Retrain : 4 of 10

Generation : 14 of 20

Aug. iteration completion tme: 19804 min(e)
& | Estimated time remaining: 1.61 hris) B Total time: 41.52 min{s)
Save Log]

Figure 13: Screenshot of Monte Carlo Simulator GUI

Figure 14 displays an example of the graphical results provided by the GUI at the completion of
an experimental run. Multiple different views of the data are available including histograms, box
and whisker plots, and scatter plots which help the user quickly understand the results of the Monte
Carlo iterations.

D€ Test Results

Box and Whisker | Scatter | Text
Test Results

250

—
]
wn

—
wn
=]

Number of lterations
= =
[=] L\s]
[=] w

75

50

25

o i
0.00000 0.00001 0.00002 0.00003 0.00004 0.00005
Score

Foma <)

Figure 14: Screenshot of visual display of experimental results provided by Monte Carlo
Simulator GUI

Approved for Public Release; Distribution Unlimited.
28

In the Appendices, we have included a User’s Guide to aid in using the Monte Carlo Simulator
GUI for running experiments. Instructions for setting up the virtual machine and accessing the
simulator are in a test file included on the DVD-R with the code itself. Start by opening the file
titled “README.txt.” The User’s Guide provides plenty of additional screen shots and
information to run the Monte Carlo Simulator.

3.2.5 Model Drift Experiments. In order to test the validity of our proposed approach for
analyzing the resistance of an IDS’s machine learning algorithms to induced model drift, a number
of experimental runs were performed. This section describes the experimental procedure used to
test each of the algorithms and IDSs described in sections 3.2.1 Algorithm Selection and 3.2.2
Real World ML-IDS as well as the experimental results. We endeavored to demonstrate through
repetition and careful experimentation precisely how susceptible each algorithm is to model drift
induced by an adversary and to note factors that may help to reduce this weakness in each of the
algorithms. As stated earlier, we focused on targeted causative integrity attacks as defined in the
taxonomy developed by Barreno et al (Table 1). In this scenario, an adversary inserts specially
crafted points into the training set in order to drift the learning models so that a specific point
which previously appeared anomalous becomes classified as innocuous. While exploring these
weaknesses in the ML models, we also sought to explicitly quantify their susceptibility.

Two sets of experiments were run using the Monte Carlo simulation framework. In the first set,
the ML algorithms were used to classify color values as either normal or anomalous based on their
Red/Green/Blue (RGB) values. The RGB value of a color is the extent of red, green, and blue the
color contains, represented as integer values between 0 and 255 inclusive. Therefore each training
point is a vector of integers of length three. The training sets used for these experiments were
sampled from a Gaussian distribution with a mean of 127 and a standard deviation of 30. We then
selected colors that the selected classifiers identified as anomalous, and measured the effort
required by an adversary to force misclassifications using the outlined approach. While this data
set is overly simplistic, it allows us to easily illustrate the above described concepts and to identify
general trends. This also gave us relative ease of processing while providing sufficient variety to
the random data sets produced for testing with the Monte Carlo simulations. This approach allowed
us to test the algorithms isolated from their associated IDSs to more purely test the mathematical
aspect of the ML algorithms separate from any potential implementation issues that may exist in
the IDSs.

The second set of experiments was designed to be more realistic, testing the resiliency of the actual
IDS implementations to adversarial drift using network data. In initial experiments, we generated
our own generic network traffic of the sort required for the IDSs covered. However, for the
majority of the experimental runs, we utilized the DARPA’99 dataset to train the anomaly
detection models. Although the DARPA’99 dataset is outdated and has been widely criticized, it
is still highly appropriate and valuable for our needs. It is the most common public dataset used to
baseline ML-IDS and lends to the repeatability of our experiments. Additionally, the largest
complaint against DARPA’99 is that it is no longer suitable for measuring the accuracy of an IDS
and its ability to detect intrusions. However, this is not the context for which we were using it. Our
goal was to find appropriately formatted network data and some attack point that is flagged as
anomalous by the classifier trained on this data. This approach does not consider the overall
accuracy of the classifier, but rather its ability to continue making an accurate prediction despite
adversarial attempts to induce model drift. Initially, we used a real HTTP attack dataset provided
by the authors of McPAD on their project website as our test points on which to force

Approved for Public Release; Distribution Unlimited.
29

misclassifications. We later inspected an alternate attack dataset (available at
https://www.mediafire.com/?a491965nlayad#7vz9n6749tlej) which offered more recent and a
wider variety of attacks.

3.2.5.1 Color Experiments. In order to illustrate the above concepts and concerns, we conducted
experiments utilizing an anomaly detector designed to classify color values as either normal or
anomalous based on their RGB values. Each training point's red, green, and blue values were
sampled from a Gaussian distribution with a mean of 127 and a standard deviation of 30. Figure
15 displays 2000 colors randomly sampled from this distribution, plotted on the Cartesian axes.
The X axis represents the red value, the Y axis represents the green value, and the Z axis represents
the blue value.

Figure 15: Colors randomly sampled from a Gaussian distribution

A number of experiments were run using the color RGB data and the identified anomaly detection
ML algorithms. For initial tests, we selected two colors that were consistently classified as
anomalous by each of the algorithms. The colors were green-yellow and goldenrod which had
RGB values of [173, 255, 47] and [255,193,37] respectively. Then, for each algorithm, we
determined the effort, as defined in Figure 1, required by an adversary to force a misclassification
on the two selected target points. This was accomplished by selecting a random training set,
training the algorithm, and then iteratively generating an insertion point, adding it to the training
set, retraining, and measuring the new test score of the target point until the target is no longer
classified as anomalous. The number of insertion points required to force the misclassification is
recorded and defined as the effort required by the adversary. We varied the size of the training set
and for each training set size ran multiple iterations with randomized data. In initial experiments,
we investigated HMMs and used Particle Swarm Optimization to generate the insertion points.
The results of these experiments can be found in our paper written for SPIE DSS entitled
“Evaluating data distribution and drift vulnerabilities of machine learning algorithms in secure and
adversarial environments,” which is included in the appendix.

During this experiment, we also evaluated the correlation between training set size and the
adversary’s ability to alter an anomalous point’s probability with a single insertion point. For each
training set, the HMM was trained and the anomalous point’s probability score was determined.
Then, an insertion point was generated using PSO, the point was added to the training set, the

Approved for Public Release; Distribution Unlimited.
30

https://www.mediafire.com/?a49l965nlayad#7vz9n6749t1ej

HMM was retrained, the anomalous point’s new probability score was computed, and the
difference between the two probability scores was calculated. The effect that an adversary can
have on the probability score of an anomalous point using a single insertion point had an almost
perfect inverse relationship with the number of points in the training set. This negative correlation
implies that increasing the size of the training set may mitigate some of the risk of a targeted
causative attack against an ML algorithm. However, the time and resource cost of training an ML
algorithm increases as the number of training points increases, and at some point, this cost must
be weighed against the potential impact of an adversary. The results of this experiment are also
located in our paper written for SPIE DSS.

In later experiments, we investigated the effort required by an adversary to force model drift for
each of the identified ML algorithms using the algorithm-specific optimization methods described
in section 3.2.8.

3.2.5.2 Optimization Selection. We varied the size of the training set and for each training set size
ran multiple iterations with randomized data. The results of these experiments are summarized in
Figure 16. The y-axis on the plots has been scaled logarithmically due to the large disparity
between the algorithms. However, it should be noted that the relationship between the training set
size and effort required by the adversary was in fact linear. These experiments allow for a simple
comparison between algorithms. For the purpose of detecting anomalous colors, SVMs appear to
be significantly more susceptible to adversarial drift than a simple centroid anomaly detector. This
also shows the advantage of using a large training dataset for defending against adversarial drift,
which must be weighed against the increased cost of acquiring data and training. More information
about these experiments can be found in our paper written for IEEE CISDA entitled “Evaluation
Model Drift in Machine Learning Algorithm,” which is included in the appendix.

Approved for Public Release; Distribution Unlimited.
31

Green-yellow
100000

=

=]

E 10000

g

=

g 1000 - # Centroid Anomaly Detector
- T »

% % 100 - EHMM
]

[| SVM
: 10

£ F

g 14

z 0 10000 20000 30000 40000 50000

Number of Points in Training Set

Goldenrod

100000

10000

1000

Centroid Anomaly Detector
EHMM
SVM

100

10

N\

1

Number of Required Insertion
Points

|
0 10000 20000 30000 40000 50000
Number of Points in Training Set

Figure 16: Effort required by an adversary to cause misclassifications of selected
anomalous color values using various ML algorithms

In the next experiment, for a fixed training set size, we tested each algorithm with a wide variety
of different colors to determine the number of points necessary for the adversary to insert in order
to force a misclassification on each. This value was then compared against the initial test scores to
gain a better understanding of the relationship between the extent to which a point is anomalous
and the model’s resistance to adversarial drift towards the point. The results of this experiment are
summarized in our paper written for IEEE CISDA. The centroid anomaly detector and HMM both
show a clear correlation between anomaly score and effort required by the adversary. The centroid
anomaly detector shows a positive correlation because its test score represents a distance from
normalcy, while HMM shows a negative correlation because its test score represents a probability
of being benign. The relationship for the SVM is not as clear due to many of the points’ initial test
scores rounding to zero, but there appears to be a loosely negative correlation.

Additionally, we ran experiments using varying configurations of the centroid anomaly detector.
The results are detailed in the IEEE CISDA paper. These results give a clear indication of which
configuration causes the most effort for the adversary and is therefore the most secure against
induced model drift.

In further experiments, our goal was to compare the performance and effectiveness of the various
optimization algorithms developed for generating insertion points. We ran experimental iterations

Approved for Public Release; Distribution Unlimited.
32

to test the various algorithms discussed in section 3.2.1 Algorithm Selection and the optimization
approaches discussed in section 3.2.9.

3.2.5.3 Optimization Selection. We selected a training set of 1000 three-dimension points
randomly selected from a normal distribution with mean 127 and a standard distribution of 30 to
use for each experimental iteration. We also chose to use green-yellow [173, 255, 47] as our
anomalous test point. Then, for each ML algorithm and each optimal point generation approach,
we calculated the number of innocuous insertion points required to successfully drift the ML
models to allow the test point and the amount of time required for the calculations. For the genetic
algorithm and the genetic algorithm with AFFG, we used a mutation rate of 5%, a population size
of 50, and an iteration count of 500. For the Nelder-Mead optimizer, we chose to run the algorithm
for 50 iterations, and the simulated annealing algorithm ran for a maximum of 1000 iterations. The
results of these experiments are summarized in Table 8.

Table 8: Performance comparison of optimal insertion point generation approaches

Centroid Anomaly Detector

Optimization Algorithm Nl::]nst;?{ig; Fé,%?ﬁged Time (Seconds) Tir(nseeigrr]gso)int
Centroid Anomaly Optimizer 545 0.546 0.001001835
Genetic Algorithm 683 11474.975 16.80084187
AFFG Genetic Algorithm 604 9759.453 16.15803477
Nelder-Mead 839 23.085 0.027514899
Simulated Annealing 578 590.008 1.020775087

Hidden Markov Model

Optimization Algorithm Nl::]nst;?{ig; Fé,%?ﬁged Time (Seconds) Tir(nseeigrr]gso)int
Centroid Anomaly Optimizer 6 0.297 0.0495
Genetic Algorithm 6 2551.304 425.2173333
AFFG Genetic Algorithm 6 292.221 48.7035
Nelder-Mead 7 25.406 3.629428571
Simulated Annealing 10 1552.281 155.2281

K-Means Anomaly Detector

Optimization Algorithm s R Time (Seconds) T"("Seeiggggm
K-Means Anomaly Optimizer 13 0.561 0.043153846
Genetic Algorithm 161 30549.549 189.7487516
AFFG Genetic Algorithm 360 116828.75 3245243056
Nelder-Mead 180 1058.763 5.882016667
Simulated Annealing 13 981.145 75.47269231

3.2.6 PCap Experiments. The primary purpose of these initial color RGB experiments was to test
the legitimacy of the framework’s capabilities and to discover baseline patterns. The next step was
to validate these results using the identified open-source IDSs with actual network data.

Approved for Public Release; Distribution Unlimited.
33

We began initial experiments with SuStorID in an effort to induce drift on its HMM models. We
utilized the technologies listed in section 3.2.9.1.1.

3.2.6.1 Technologies Used to automatically generate requests to our simple test web application
that was protected by SuStorID. For our initial test point, we selected a value that when entered
into the text field on the sample HTML page would be classified as an anomaly by SuStorID’s
models trained with our generated traffic. Although this test point did not represent a genuine
attack against the web app, it suited our purpose for initial testing as it was an anomaly that could
be used as the target for model drift. While we were able to demonstrate drift manually during
testing, it soon became apparent that SuStorID itself was much too unreliable for automated
testing. The system would often crash and need to be restarted during the training phase. This made
it very ill-suited for automated iterative testing which relied upon repetitive retraining. For this
reason, few results are available and we instead chose to focus on a different IDS which utilizes
HMMs, HMMPayl.

HMMPayl required training data from PCap files in order to create its learning models. As
mentioned above, we chose to use the DARPA ‘99 data set as our source of training data. In our
literature review, we found the DARPA ‘99 data set to be a very common data set used by
researchers to develop and test the their IDSs and thus was a convenient source of network traffic
to use in our own testing. It allowed us to verify their results to an extent and to compare our results
to theirs in part as well. For our test points, we chose to use the attack data provided by the authors
of McPAD on their project website. The data set consisted of a number of PCap files that each
represented an HTTP attack. This provided us with genuine attacks that we could test the IDS
against. For an initial test, we selected an intrusion point from the identified attack data set that
was consistently flagged by HMMPayl when trained with data from the DARPA’99 dataset. This
attack point actually consisted of seven packet payloads representing a chunked encoding transfer
heap overflow against Microsoft 11S. The HMM-specific approach for generating insertion points
was applied until each of the seven payloads went undetected by the IDS. This was repeated
multiple times with randomly selected normal traffic for varying training set sizes. The results of
this experiment can be found in our paper written for IEEE CISDA. A linear relationship between
the training set size and the number of insertion points required by the adversary became apparent.
The slope of the best-fit line revealed that on average the adversary need only insert 0.486% of the
training set size to successfully induce model drift while remaining undetected.

Similar to the color experiments, we next selected every individual packet payload from the attack
dataset. For a fixed training set size, we determined the number of insertion points required by the
adversary in order to create a misclassification on each payload. We again used the HMM-specific
approach for generating insertion points. The required number of points is compared against the
initial test score of the payloads to give the security administrator an overall feel for the resiliency
of the system. The results of this experiment are summarized in our paper written for IEEE CISDA.
For the selected attack points there is a loosely negative correlation between the initial test score
and the required number of insertion points. It can also be seen that the adversary needs to insert
no more than 0.1% of the training set in order to create a misclassification on a single payload.

A more careful examination of the attack data set revealed that the payloads detected by the IDS
were very homogenous. Many of the payloads were similar to each other and consisted primarily
of the same byte pattern, two bytes repeating iteratively. For this reason we identified an additional
attack data set which contained more recent data and offered a greater variety of payloads. Several
PCap files were downloaded from this source (available at

Approved for Public Release; Distribution Unlimited.
34

https://www.mediafire.com/?a491965nlayad#7vz9n6749tlej) and were used as our test data set.
For a fixed training set size of 500, we determined the number of insertion points required by the
adversary in order to create a misclassification on each payload from the new test data set of
attacks. We again used the HMM-specific approach for generating optimal points. Figure 17
summarizes the results of this experiment. At a maximum, 254 insertion points, or 50.8% of the
training set, were required. However, for a number of payloads, only 1 insertion point was required
to cause the misclassification. On average, about 36.5 insertion points (7.3% of the training set)
were required for each payload, with a median value of 21 insertion points (4.2% of the training
set).

300

250

200

150

Points

100

30

Number of Required Insertion

-
0 * o »

0.00E+00 1.00E-13 2.00E-13 3.00E-13 4.00E-13 5.00E-13 6.00E-13
Initial Test Score of Point

Figure 17: Effort required by an adversary to cause HMMPayl to misclassify selected
attack payloads

We additionally attempted to run similar experiments using McPAD as our IDS in an effort to drift
its SVM models. It soon became apparent, however, that the SVM-specific approach developed
for generating optimal points that was successful during the RGB experiments did not extrapolate
well to non-Gaussian network data. Using this method, we were unable to induce the desired drift
effects. We therefore attempted each of the universal optimization methods described in section
3.2.3.5 Universal Optimization. Again, we were met with little success. Often we were able to
increase the score of the test point, but the threshold would also increase at an equal or greater rate,
causing the point to remain anomalous. Unfortunately, this was not resolved, and it appears as
though the methods utilized by McPAD are relatively secure to adversarial drift. Even when
removing McPAD’s advantage of using an ensemble and instead using a single SVM model, we
had limited success.

3.2.7 HPC Experiment. As mentioned above, one of the major drawbacks of our chosen approach
for evaluating ML systems and for generating ‘optimal’ insertion points is the computational time
requirement. Our method for measuring the security of an ML system against model drift requires
iteratively adding points to the training set and retraining. This retraining of the learning models
may be an expensive process, especially for larger data sets. Additionally, the fitness function of
our heuristic-based optimization approaches for generating insertion points also requires retraining

Approved for Public Release; Distribution Unlimited.
35

https://www.mediafire.com/?a49l965nlayad#7vz9n6749t1ej

the ML models. In an effort to mitigate this limitation and to greatly expedite our experimental
runs, we acquired access to the High Performance Computer (HPC) Condor cluster available to
AFRL researchers.

In order to take advantage of the large amount of processing power, available memory, and
multiple nodes on the HPC, a distributed version of the Monte Carlo Simulator Java APl was
developed. A class was created which was responsible for tasks such as training the ML algorithm
models, testing given test points, and generating ‘optimal’ insertion points. Then, a server class
was created which creates an RMI registry and binds an instance of the other class to the registry.
This server would be started and run on each of the available nodes on the HPC, waiting for
requests to train/test an algorithm or generate optimal points. The MonteCarloSimulator class was
then altered so that iterations of the current task would be run simultaneously on the remote servers,
communicating through remote method invocation (RMI). Each of the functionalities listed in
Table 7 was modified to be able to run in a distributed manner as such. Additionally, to take
advantage of the processing power and memory of each node, the methods to be carried out on the
servers were also multi-threaded, so that multiple iterations could be run concurrently on each.
This meant that n*t iterations could be run simultaneously, where n is the number of available
nodes, and t is the number of threads to run on each. This obviously decreased the time
requirement for experimental runs.

Additionally, effort was made to increase the speed at which optimal points are generated through
heuristic algorithm-independent methods. We chose to work with genetic algorithms as they
initially appeared to produce the best results when given time to run to completion. Also, genetic
algorithms are easily distributable. The fitness function calculation is the most expensive process
and occurs for each member of the population during each generation. However, this is an
independent process, so the fitness values of all members of a given population may be calculated
concurrently. To implement this, we developed a class which is responsible only for calculating
fitness values. Then, a server class was developed which creates an RMI registry and binds an
instance of the fitness calculation class to the registry. This server would be started and run on
each of the available nodes on the HPC, waiting for requests to calculate the fitness value for a
given test point. We then altered the genetic optimizer class so that fitness calculations for the
members of the current population are run simultaneously on the remote servers, communicating
through RMI. The fitness calculation class also allowed for multi-threading, enabling multiple
fitness values to be calculated concurrently on a single node, taking advantage of the processing
power and memory on the nodes. This meant that the fitness of n*t points could be calculated
simultaneously during each generation. To further speed up calculations, the Adaptive Fuzzy
Fitness Granulation method described in section 3.2.3.5.3 was implemented into the distributed
genetic algorithm.

A number of experiments were run utilizing the distributed implementation of the Monte Carlo
Simulator on the HPC. In order to compare the performance of the genetic algorithm on the HPC
versus on a standalone machine, a simple test was run to generate optimal points that would drift
an HMM to accept an anomalous point. Ten-dimensional Gaussian training data was used with a
training set size of 300 points, and the genetic algorithm used a population size of 50 and ran for
500 iterations. When running 5 threads concurrently on a standalone laptop with a quad-core 2.70
GHz processor and 16.0 GB of RAM, it took about 397 seconds on average to generate each
optimal insertion point. When running on the HPC with 7 nodes and 5 threads running

Approved for Public Release; Distribution Unlimited.
36

concurrently on each, it took about 116 seconds on average to generate each optimal insertion
point. With just 7 nodes, the HPC allowed points to be generated over three times as quickly.

A similar experiment was attempted using HMMPay!| and network training data from the DARPA
’99 data set. However, using just 200 packets for training and a population size of 100 for 100
generations, the genetic algorithm took roughly 26 hours to generate just 5 insertion points. This
was deemed unreasonably long, and alternate optimization methods were investigated at this point.

Although the HPC did not improve the speed of the algorithm-independent optimization methods
to quite the extent that we had initially hoped, it still proved to be useful for decreasing the time
requirements for experimental runs. Specifically, when running tests using the faster algorithm-
specific optimization methods, many points could be tested simultaneously. Also, more iterations
could be run as each one processed more quickly, leading to less variance in results.

3.2.8 ICS and SCADA. Having been granted access to Industrial Control System (ICS) and
Supervisory Control And Data Acquisition (SCADA) specific networking hardware, we produced
an experiment plan for proposed work using our methodology in the context of studying and
assessing ICS and SCADA security systems which use learning systems to handle any portion of
the network threat identification. Details are available at a higher security level and are not
included in this document.

4.0 CONCLUSIONS

As a result of our research, we have created a methodology to explore the susceptibility of
algorithms used in research-based ML-IDS to induced data drift while they are operating in an
adversarial environment. The methodology was developed while examining and subsequently
testing several anomaly detectors to establish the baseline approach and results. We further
developed and validated the methodology through analysis of additional algorithms implemented
in an ML-IDS. We identified potential heuristics to create insertion points in order to induce data
drift. We then ran a series of experiments to thoroughly exercise the identified ML-IDSs in order
to explore their susceptibility to induced data drift while operating in our tightly controlled
adversarial environment. We progressed from the overly-simplified RGB values used to establish
baseline results to using real-world network traffic data. Our initial experiments demonstrate the
type of valuable information that a system administrator may gain through the use of our
framework, and preliminary results indicate that the ML algorithms utilized by ML-IDS are indeed
susceptible to induced data drift while operating in an adversarial environment.

4.1 Recommendations

While developing future ML-based systems that are to be deployed in adversarial environments,
it is essential that the security of the learning models is considered. We have demonstrated that in
many cases it is a trivial matter for an adversary to force a misclassification of an intrusive point
simply through the addition of innocuous points into the training corpus. For this reason, in
addition to functional and integration testing, it is vital that the susceptibility of these systems to
induced data drift is also thoroughly tested in order to ensure that the systems are as hardened as
possible to vulnerabilities. Our framework and methodology provide an ample starting point for
testing and measuring the security of ML models.

The suitability of a ML algorithm is often determined by calculating the accuracy, precision, or
recall during a validation phase. Researchers typically make the assumption that data distributions

Approved for Public Release; Distribution Unlimited.
37

will remain the same at test time as during validation. However, this stationary assumption is often
violated, particularly in dynamic environments such as network security. This issue is only
exasperated by the presence of an adversary. In order to mitigate this, researchers must develop
their ML algorithms and models with security in mind from the offset. This includes choosing
methods that are robust to noise and avoid overfitting to outliers. This limits the detrimental effects
that an adversary may inflict through the addition of insertion points and additionally allows the
model to generalize better to new data. Researchers should also consider ensemble methods, or
using the result of multiple learning algorithms combined to make a prediction. This has been
shown to not only improve overall predictive performance, but would also increase the amount of
work required by the adversary as they would be forced to induce drift on multiple models.

Developers of ML-based systems should also be sure to limit the amount of information available
to an adversary. This includes ensuring that information about the training set is secure so the
adversary is not able to determine data distributions or other information that would allow them to
infer details of the ML models. Also, information about the type of algorithms and models utilized
should be kept secret as it would better allow the adversary to develop a targeted drift strategy.
During run-time, the resulting score of testing points against the trained models should not be made
available to the adversary. The test score shows them the exact progress and effectiveness of their
drift attack, enabling them to further tailor and improve their strategy.

As mentioned above, ML-1DS operate in a dynamic environment in which the relevant factors and
standards of normalcy are constantly changing. Therefore, periodic retraining of the anomaly
detection models will remain an important aspect to ensure that the models remain current and
effective. However, we have shown in our research that this retraining process creates an
opportunity for an adversary to insert traffic and negatively impact the learning models.
Developers must take precautions to limit the effects of the adversary during these necessary
retrain periods. Retraining should not be done at regular intervals as this period may easily become
known to the adversary. Additionally, not every point received should be included in the new
training set to update the models. An effective method may be to randomly select points from a
pool of potential points. The adversary would then have no guarantee that their insertion points
are included, and would increase their required effort. Also, points considered for retraining should
be tested against the existing models to ensure that points classified as obviously anomalous or
malicious are not included.

Although we have observed that ML-based systems are indeed susceptible to induced model drift,
itis still our belief that ML-IDS is a promising field of research and should continue to be explored.
Traditional signature-based IDSs generally fail to detect zero-day and polymorphic attacks. ML-
IDSs aim to solve this issue by detecting general patterns indicative of an attack rather than specific
signatures, and research has shown a considerable amount of success in this regard. Current ML-
IDSs are not perfect though, and are not yet widely deployed, leaving much room for research and
improvement. As the field matures, however, we believe that these ML approaches will become
pervasive and important aspects of cyber security. Specifically, we have observed that anomaly
detection algorithms are more commonly developed and deployed due to their lack of reliance on
labeled training data, which is often difficult and expensive to obtain.

We also recommend that any ML-IDS is deployed in tandem with a signature-based IDS. While
signature-based IDSs are ineffective at detecting unknown attacks, they are still very valuable for
detecting attacks for which a known signature exists. Due to the generalization of the models
created by ML-IDS, there will inevitably be a non-negligible number of false negatives. These un-

Approved for Public Release; Distribution Unlimited.
38

flagged attacks may often be caught by a signature detection method. Additionally, this makes the
system more secure as those attacks with a known signature are impervious to the effects of model
drift.

When generating insertion points to test a ML-based system’s resistance to induced model drift,
we recommend using a specialized algorithm-specific method over a universal optimization
approach. Our algorithm-specific approaches were much faster as they did not require repeated
retraining of the ML models. This becomes particularly relevant as the training set size increases.
They also tended to be more effective, as less points generated using this method were required to
force misclassifications. The drawback to this approach, of course, is that a prior understanding of
the ML algorithms is required, which may not always be available. In this case, the universal
approaches are relatively effective, but involve a much greater time commitment.

4.2 Future Research

There are many interesting and novel directions in which the research may progress from this point
beyond just further data collection and analysis. Future research should extend to include:

e Exploring algorithms not yet covered which have been used or may be used by other ML-
IDS.

e Testing alternative libraries that implement included/excluded algorithms to explore
sensitivities related to implementations across identical algorithms.

e Investigating additional data types that are considered by IDSs, both commercial and in
research, such as trace and log file parsers, executable analyzers, and even multi-session
analyzers.

e Exploring optimization methods to create an improved method for generating insertion
points that is universal while also being feasible time and computational power-wise.

e Investigating additional sections of the ML attack taxonomy including evasion attacks
which do not require influence over the training set.

e Studying defensive remediation that can be used to mitigate the vulnerabilities observed as
a part of this work.

e Investigating ML-based IDS in ICS/SCADA networks to provide suggestions to make
these systems more resilient and robust.

e Creating a Metasploit module for our methodology to be used by our cyber forces to be
used for pen testing Department of Defense resources to further harden our networks for
improved network defense.

e Abstracting the research to create a general methodology for measuring the security and
suitability of ML algorithms in a domain-independent context.

Additionally, future research should investigate the drift susceptibility of the above systems after
reducing the assumptions and prior knowledge/access granted to an adversary. As mentioned, this
research assumed a worst-case scenario from the defender’s perspective and limiting the
assumptions would give a more realistic picture of the true security of the system. This includes
removing the adversary’s knowledge of the ML algorithm implemented, the decision boundaries,

Approved for Public Release; Distribution Unlimited.
39

and the training set, which would then require additional careful probing by the adversary in order
to ascertain this information and maintain con.

Mitigating the identified weaknesses of the ML systems is an important topic of future research.
Barreno et al. describe various defensive measures which may be utilized to harden an ML system.
These techniques include:

Reject on negative impact (RONI) defense — measures effects of each training instance and
rejects points which are seen to have a negative impact on classification.

Robust algorithms — based upon Robust Statistics. The goal is to create a procedure which
will limit the impact of deviant points by accounting for qualitative robustness, the
breakdown point, and the influence function of the procedure.

Online learning with experts — uses a set of classifiers each designed to provide a different
security property and predictions/advice for training.

Hide training data — if access to the training data is denied, an adversary is unable to
determine the exact decision boundaries of the models used by the ML so as to analyze a
way to bypass them.

Good feature selection — make classifiers difficult to reverse engineer through careful
selection of features which are kept secret and possibly even mapping raw features into a
different feature space altogether.

Limited/misleading feedback — provide feedback to attacker that provides as little
information as possible revealing their level/lack of success during the probing attack.

Future research should take into account and analyze these defensive measures and include an
investigation into the efficacy of the defensive measures when applied to specific ML algorithms.
Utilizing the analysis method described in the above experiments, future experiments may be run
in order to paint a better picture of the defensive capabilities of ML algorithms in adversarial
environments.

Approved for Public Release; Distribution Unlimited.
40

5.0 REFERENCES

M. Barreno, B. A. Nelson, A. D. Joseph, and J. Tygar, “The security of machine learning,” in
Machine Learning, vol. 81, no. 2, 2010, pp. 121-148.

C. Tsai, Y. Hsu, C. Lin, W. Lin, "Intrusion detection by machine learning: a review", in Expert
Systems with Applications, Vol. 36, Elsevier, 2009, pp. 11994-12000.

Tavallaee, M., Stakhanova, N., & Ghorbani, A. A. (2010, September). Toward Credible Evaluation
of Anomaly-Based Intrusion-Detection Methods. IEEE Transactions on Systems, Man, and
Cybernetics - Part C, 40(5), 516-524.

Approved for Public Release; Distribution Unlimited.
41

APPENDIX A - Data Mining in Cyber Operations (Cybersecurity Systems for Human
Cognition Augmentation)

AFRL-RI-RS-TR-2014-189

DATA MINING IN CYBER OPERATIONS

JULY 2014
INTERIM TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

B AIR FORCE MATERIEL COMMAND B UNITED STATES AIR FORCE B ROME, NY 13441

Approved for Public Release; Distribution Unlimited.
42

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; of convey any rights or permission to manufacture, use, or
sell any patented invention that mavy relate to them

This report was cleared for public release by the 88™ ABW. Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http:/waww dtic mil).

AFRI-RI-RS-TR-2014-18% HAS BEEN REVIEWED AND IS APPROVED FOR. PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR. THE DIRECTOR:

MISTY BLOWEERS BEENT HOLMES

Work Unit Manager Chief Cyber Operations Branch
Information Directorate

This report is published in the inferest of scientific and techmical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

Approved for Public Release; Distribution Unlimited.
43

REPORT DOCUMENTATION PAGE Form Approved

The public reporting bunden for this collection of information ks estmated fo average 1 Rour per response, Induding e Sme Tor neviewing Insructions, searching existng data sounces, gathering and
mainkiring the dala nesded, and compieling and reviewing the colection of Infarmaion. Send comments regarding Tis burden estmate or any other aspect of this coliecion of Information, Inckxding
sugpesions for neducing is burden, o Depariment of Defense, Washington Headguarers Senvioes, Direciorale for information Operafions and Reports (0T02-0158), 1215 Jefierson Davis Highwary,
Suibe 1204, Aringlon, VA 2202-4302. Respondents should be awarne that notwithstanding any other provision of law, no perzson shall be subject o any penaly for faling bo comply wish 2 coliection of
Imformakion If It does nof display a cumenty waild OME control number.

PLEAZE DD NOT RETURN TOIUR FORM TO THE ABOVE ADDRESE.

1. REPORT DATE (DD-MM-YY¥Y) 2. REPORT TYPE 3. DATES COVERED [From - To)
JULY 2014 INTERIM TECHNICAL REPORT MAR 2012 — MAR 2014
4_TITLE AND SUBTITLE 3a. CONTRACT NUMEBER
IN-HOUSE
(=
DATA MINING IN CYBER OPERATIONS =5 GRANT NUMBER
MIA
3c. PROGRAM ELEMENT NUMBER

61102F
6. AUTHOR(S) 3d. PROJECT NUMBER

ACRE
Misty Blowers, Stefan Fernandez, Brandon Froberg, and
Jonathan Williams (AFRL/RI) se. TASK NUMBER H
George Corbin and Kevin Nelson (BAE Systems) 5f. WORK UNIT NUMEER

01
7. PERFORMING ORGANIZATION NAME([S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Air Force Research Laboratory/RIGE REPORT NUMBER
525 Brooks Road
Rome NY 134414505
9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
Air Force Research Laboratory/RIGE AFRLIRI
595 Bracks Road 11 SPONSOR/MONITOR S REPORT NUMBER
Rome NY 134414505
AFRL-RI-RS-TR-2014-189

12. DISTRIEUTION AVAILABILITY STATEMENT

Approved for Public Release; Distibution Unlimited. PAZ BSABW-2014-0954
Date Cleared: 7 Mar 2014

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The dynamic nature of the cyberspace environment presents opportunities for both attackers and defenders to conduct
complex cyber operations in 2erial or parallel across multiple networks and systems. Defensive operators must be vigilant
to identify new attack vectors, realtime attacks as they happen, and signs of attacks that have gotten through the security
perimeter. This means that defenders must continuously sift through vast amounts of sensor data that could be made
more efficient with advances in data mining techniques to accurately map the attack surface, collect and integrate data,
synchronize time, select features, develop models, extract knowledge and produce useful visualization. Effective
techniques would enable models that describe dynamic behavior of complicated attacks and failures and allow defenders
to detect and differentiate simultaneous sophisticated attacks on a target network.

13. SUBJECT TERMS
Cyber Operations, data mining, leaming models

16. SECURITY CLASSIFICATION OF: 17. UMITATION OF | 18. NUMBER 19a. HAME OF RESPOMNSIBLE PERSON
ABSTRACT OF PAGES MISTY BLGWERS
a. REPORT b. ABSTRACT ¢. THIS PAGE I 6 13b. TELEPHONE HUMEER [include area coda)
U i 1 uu 315-330-3438

Tlandard Form 298 [Rev. 8-95)
Precoribed by AN 33d. Z38.18

Approved for Public Release; Distribution Unlimited.
44

Book: Network Science and Cybersecurity, Springer, Tuly 2014

Chapter Title: Data Mining in Cyber Operations

Awthors: Dr. Misty Blowers, Lt. Stefan Fernandez, Lt Brandon Froberg, Capt. Jonathan
Williams, AFRL/ BRI, Rome, NY

George Corbin and Eevin Nelson, BAE Systems, Rome, NY

Introduction

Cyber operations has been roughly defined as the employment of cyber capabilities to achieve
military objectives or effects in or through cyberspace [1] Defending cyberspace 1s a complex
and largely scoped challenge which considers emerging threats to security in space, land, and

sed.

Joint Publication 1-02, Department of Defense (DoD)) Dictionary of Military and Associated
Terms defines cyberspace as a global domain within the information environment consisting of
the interdependent network of information technology infrastructures, including the Internet,
telecommunications networks, computer systems, and embedded processors and controllers [1]
Cyberspace operations 15 defined as the employment of cvber capabilities where the primary
purpose is fo achieve military objectives or effects in or through cyberspace. Such operations
mclude computer network operations and activities to operate and defend the Global Information
Grid. The global cyber infrastructure presents many challenges because of the complexity and
massive amounts of information transferred across the global network daily. The cyber
mfrastructure is a made up of the data resources. network protocols, computing platforms, and
computational services that bring people, information, and computational tools together.

Data Mining

According to Han and Kamber, [2] data mining is a process of discovering inferesting patterns in
large amounts of data which as previously noted is often a challenge in cvber operations. In
order fo gain a tactical edge, a warfighter nmst be able to apply data mining techniques to be
maneuverable in cyber space. Maneuverability in cyberspace allows attackers and defenders to
sinmltaneously conduct actions across multiple systems at multiple levels of warfare. For
defenders, this can mean hardening multiple systems simultaneously when new threats are
discovered, killing multiple access points during attacks. collecting and correlating data from
multiple sensors in parallel or other defensive actions.[3] The complexity and dynamics of cyber
operafions is only weakly understood, especially when a nation is engaged in cvber-warfare.

The dynamic nature of the cyberspace environment presents opportunities for both attackers and
defenders to conduct complex cyber operations 1n serial or parallel across mulfiple networks and
systems. [4] Defensive operators must be vigilant to identifv new aftack vectors, real-time
attacks as they happen. and signs of attacks that have gotten through the secunty perimeter. This
means that defenders must continuously sift through vast amounts of sensor data that could be
made more efficient with advances in data mining techniques to accurately map the attack
surface, collect and infegrate data, symchronize time, select features, develop models, extract
knowledge and produce usefil visualization. Effective techniques would enable models that
describe dynamic behavior of complicated attacks and failures and allow defenders to detect and
differenfiate sinmltaneous sophisticated attacks on a target network. [4] Defensive operators that

Approved for Public Release; Distribution Unlimited.
1

Approved for Public Release; Distribution Unlimited.
45

manage an enfterprise-level network, distributed networks or nltiple, interoperating networks
face a significant challenge of strategic coordination to defend against complex cyber-attacks.
These operators clearly face a “big data™ problem. [3]

“Big Data™ is about the growing challenge in how we deal with the large and fast-growing
sources of data or information. It presents a complex range of analysis and use problems. [6]
There are many considerations when dealing with massive amounts of data. One challenge is in
having a computing infrastructure that can ingest, validate, and analyze high volumes (size
and/or rate) of data. Another is in assessing mixed data (structured and unstructured) from
multiple sources. It is often very challenging to deal with unpredictable content with no apparent
schema or structure, and often a challenge enabling real-time or near-real-time collection,
analysis, and answers. [§]

Before one attempts to extract useful knowledge from data, if 1s important fo understand the steps
in the data mining process. Simply knowing many algorithms vsed for data analysis is not
sufficient for successful data mining (DM). The figure below outlines the process of mining data
that leads to knowledge discovery.

Data Mining: A KDD Process eilus

Pattern Evalmation
Data mining: the core of

knowledge discovery Datn Mining
process. /

Task-relevamt n:.;:.
Data Warchouse /’ﬁliﬂl

Dhats Cleaning .
________ 4
Allugutlna ;
4 i
Datahases

Figure 1: The Knowledge Discovery from Data process allows for the "mining”
of valuable knowledge from vast amounts of data just as a miner mines for gold
[2]

Fayyad et al. [38] describe the knowledge discovery from data model as a series of nine steps.

1. Develop and understand the application domain. This step includes learning the relevant

prior knowledge and considers the goals of the end user.

2. Create a target data set. Here the data nuner selects a subset of variables (attributes or features)
and data points (examples) that will be used to perform discovery tasks. This step usually
mcludes querving the existing data to select the desired subset.

Approved for Public Release; Distribution Unlimited.
2

Approved for Public Release; Distribution Unlimited.
46

3. Data cleamng and preprocessing. This step consists of considering outliers, dealing with noise
and missing values in the data, and accounting for time sequence information and known
changes. Cutliers may be irrelevant or be significantly relevant depending on the task at hand.
4. Data reduction and projection. This step consists of finding useful attributes by applyving
dimension reduction and transformation methods, and finding invanant representation of the
data.

3. Choosing the data mining task Here the data miner matches the goals defined in Step 1 with
a particular DM method, such as classification, regression, clustering, efc.

6. Choosing the data mining algorithm. The data miner selects methods to search for patterns in
the data and decides which models and parameters of the methods used may be appropriate.

7. Data muning. This step generates patterns in a particular representational form, such as
classification rules, decision trees, regression models. trends. etc. More advanced machine
learning methods also may apply here.

& Interpreting mined patterns. Here the analvst performs visualization of the extracted patterns
and models, and visualization of the data based on the extracted models.

9. Consolidating discovered knowledge. The final step consists of incorporating the discovered
lmowledge info the performance system, and documenfing and reporting it fo the interested
parties. This step may also include checking and resolving potential conflicts with previously
believed knowledge. In the cyber domain mefrics to measure the effectiveness of detection or
battle damage assessment 15 considered.

The traditional approach to vnderstanding and protecting the cyber domain is a highly manmual
and human intensive process. It is growing increasingly difficult for these manual processes to
keep up with both the massive amount of data and the quickly changing landscape of the cyber
domain_ It has become necessary to utilize automated techniques to maintain situational
awareness and effective offensive and defensive strategies in the cyber realm Data mining
within cvber operations provides some techniques to address these challenges. Through the data
mining process described above, one can find hidden patterns. interesting data, or relevant
correlations within large datasets. It provides techniques to automate the discovery of structure or
patterns which would otherwise be out of reach from human analysts. This analysis is typically
performed in an automated process with a variable amount of human interaction, depending on
the application.

The scope of data mining for cyber operations is large enough to be its own book, so for
purposes of this chapter the scope will be limited to intrusion and malware detection, social
networking for cyber situational awareness, and emerging topics for data nuning in cyber
operations.

Data Mining for Infrusion Detection

Intrusion Detection and Prevention Systems (IDPS) are automated soffware designed to monitor
traffic or mine through select data sources in search of evidence of an infruder attempting to
compromise the network. An IDPS is created to monitor characteristics of a host, the network,
and combination of both host/network. [9] IDPSs use three basic types of defection fo discover
mtrsions: signature-based detection, anomalv-based detection, and stateful protocol analysis
[10].

Approved for Public Release; Distribution Unlimited.
3

Approved for Public Release; Distribution Unlimited.
47

Signature-based IDPS use signatures, patterns known fo indicate a threat, to compare to
observable event patterns in order to identify a current threat [10]. A signature-based IDPS is
used in firewalls as a first line of defense as it can efficiently identify threats and act before
damage 15 done for very precisely defined and common threats. A disadvantage to this approach
15 that it relies entirely on a database of known aftack signatures to compare against the current
network activity. Data mining may be applied to a signature-based IDPS by observing and
analyzing known and suspected attacks to discover new signatures and patterns indicative of an
wtrusion [11].

Applying data mining techniques allows not only for these previously undiscovered signatures to
be found, but also for generalized patterns of attacks to be seen. New and novel attacks, which
may not exactly match a previously observed signature, may still match the general patterns of
an aftack that were learned through data mining techniques.

Anomaly-based detection depends on understanding normal patterns of network activity and
looking for activity which appears abnormal relative to normal activity [10]. The vast majority of
new threats will come in as anomalous traffic and vet will likely be undetectable by Signature-
based Detectors until new signature rules can be created once they are detected, countered and
accounted for in the signature database. An anomaly-based IDPS can be successful in detecting
aftacks which are novel or vary too far from a signature to be detectable by the signature-based
IDPS. They are slow to train and heavily dependent upon having very good “normal”™ data to
upon which to base the training. Data mining 1s very applicable to this approach, as anomaly
detection relies entirely on defining a baseline of normaley. Various data mining techniques may
be effectively used to learn a meaningfil definition of normaley based on known benign network
connections. [12]

Stateful Protocol Analysis also looks at behavior outside of known signature patterns to precisely
how protocols are designed to be used and what the profocol creators expect to see when those
protocols are used [10]. The key is not only in finding anomalous behavior, but also in finding an
anomalons behavior bevond what is typical for a specific network activity. Part of understanding
a statefinl interaction befween a user and a network resource is the series of communications
between them and not just individual packets as signature-based and most anomaly-based
detectors are usually looking at. Looking at the state of the transactions, the infent of the user is
revealed. Monitoring state in a network is complex and requires a lot of processing power in high
volume networks. As new normal uses for protocols are developed. these systems need to be
modified to understand them to ensure that they are not producing false positives. Again data
mining proves useful for defining what constitutes normal use based on previous network
activity.

Data Pre-processing

Feature selection is a fisndamental part of the Data Mining Process. The main goal is to identify
features that are important to the mining effort. The effort of feature selection is to reduce the
dimensionality of the data to make processing the data more efficient. Within the study of data
mining there is a phenomenon called “the curse of dimensionality”™ in which all the dataset

Approved for Public Release; Distribution Linlimited.
4

Approved for Public Release; Distribution Unlimited.
48

members appear isolated and unique from the others. According to Dartigue, Jang and Zeng, the
areas to analvze for feature selection and extraction can be in [12]:

Intrinsic features which exist in all network traffic such as protocol, port, destination
server name, and requester IP address

Time-based features which connect traffic from “same host™ or “same service™ which is
valuable in identifying DoS and fast probing exploratory attacks

Host-based fraffic features include grouping connections based upon the same server
destination to help to identify slower probing attacks

Content-based features that are designed to consider long term asynchronous
conversations between the target server/service and the attacker’s software chient. These
can be characterized as being slow, methodical and thorough attacks over wide windows
in time

Model Development

Varions data mining techniques have been explored in existing research to create Intrusion
Detection Systems. Tsai, Tsu et al. performed a survey of machine learning techmiques for
mtrusion detection seen in research papers between 2000 and 2007 [13]. Much of the research
utilized training data to create classifiers which map mnput data to an output (benign or an
mtrusion). New mcoming network traffic would be put through this classifier to determine if it
represents an intrusion or not. The classifiers were generally one of three types: single, hvbrid,
or ensemble. Single classifiers utilize one single machine learning algorithm to create a single
model which is used to make classifications. The most common single classifiers used to create
IDPSs in the research are as follows:

E-nearest neighbor (EINN) [17][18]: instance based learning to classify a new vector
based upon it’'s calculated nearest neighbor from the tramning set

Support vector machines (SWM) [19]: a supervised mode] defining the decision
boundary, gap between the most divergent training examples, based upon support vectors
rather than the whole training set to classify new events

Artificial nevral networks (ANN) [20]: information processing vnifs intended to mimic
the network of neurons in the human brain for performing paftern recognition
Self-organizing maps (SOM) [21]: an artificial neural network that uses vnsupervised
training to produce discretized representation of the training data in the form of a low-
dimensional map

Decision frees [18][22]: maps feature observations about an event fo conclusions learned
from the features of a training dataset in the form of a classification/regression free
Naive Bayes network [23]: analyzing the features independently of each other along a
normal distribution as established by the training dataset

Genetic algorithms [24]: a meta-heuristic designed to mimic natural selection in finding
the most effective classification of new events based upon the features trained from the
training dataset

Fuzzy logic [25]: based upon a real world concept that things are never just black and
white, rather they are in the spectrum of greyv between the two extremes. It treats the
training data as more benign and compares new data to be processed as more or less
benign in comparison to the training set.

Approved for Public Release; Distribution Unlimited.
5

Approved for Public Release; Distribution Unlimited.
49

Hybrnd classifiers combine mmltiple machine learming techniques fo improve performance. This
approach represents a more customized implementation to suit specific intrusion detection
objectives. Hybrid classifiers may include mmiltiple levels of processing/filtering of the training
data where later phases are fed subsets of results from earlier filtering [26].

Ensemble classifiers are another effort to improve on single classifiers. They apply a collection
{ensemble) of learning algorithms to different training samples to collectively provide improved
performance [27].

As data mining and machine leamning tools become more popularly utilized methods for
mimsion detection, they also become popular targets for adversanes to attempt fo vndermine. In
compufing, a denial-of-service (DoS) or distributed denial-of-service (DDoS) attack is an attempt
to make a machine or network resource unavailable to its infended users. One commeon method
of this attack involves saturating the target machine with external communications requests, so
much so that it cannot respond to legitimate traffic or it responds so slowly it is rendered
essentially unavailable. Such attacks vsually lead to a server overload. For these types of attacks,
the feature selection process becomes exceedingly more important. Computational resources can
be optimized if critical features are detected and the noise is filtered away.

Barreno. Marco. et al provide an excellent taxonomy of other approaches adversaries may use
agamst typical IDPS [7]. These taxonomies are shown in Figure 2.

Cansative:

Targeted

Indiscriminate

Explorarory:
Targeted

Indiscriminaie

Inregrity

Availability

The fetrusion forefeld. mis-irain a par-
ficular mfrsion

The inrension foretold: inis-rain amy
of several mtmisions

The regue IDS: mis-train [DS 10 block
certam fratfic

The rogwe IDS pns-tram [DS o
broadly block traffhc

The shifiv infraeder: obfuscate a chosen
1Ts100

The shifty intrudar: obfuscate any m-
Trtsic

The nistaken identiny: censor a partic-
ular haost

The misioken identitv: mterfere with
trathic generally

Figure 2 Taxonomy of attacks against IDPS [8]

According to the taxonomy, an aftack 1s broken down into three different axes, influence,

specificity, and security violation. The influence of an attack defines whether it is causative or

Approved for Public Release; Distribution Unlimited.

i]

Approved for Public Release; Distribution Unlimited.

50

exploratory. A causative affack modifies the training set that patterns are mined from in order fo
mfluence the learning model. An exploratory attack does not alter the traiming process, but
rather uses other techniques to take advantage of existing weaknesses or blind-spots in the
model. An attack is further classified by its specificity as being either targeted or indiscriminate.
A targeted aftack focuses on a specific intrusion or creating a specific misclassification while an
mdiscriminate attack looks for any possible intrusion. The third axis. security violation, focuses
on the CIA (confidentiality, integrity, availability) model of a network by describing an attack as
either an integrity attack or availability attack. An integrity attack results in the IDPS incorrectly
classifying an intrusion as benign (false negatives) while an availability attack causes so many
muisclassifications (both false negatives and false positives) that the IDPS becomes nnusable.

Malicionus Code Detection

Within the scope of intrusion detection is the more specific security concern of malware or
malicious code detection. As the prevalence of malware infections has reached epidemic
proportions, it is becoming increasingly important to choose the right defenses to prevent costly
malware infections that are targeted at stealing sensitive corporate secrets and mining critical
user information records. With today’s Internet, malware researchers are seeing a large spike in
malware activity and estimate that thousands of new malware variants are being released into the
wild dailv. Working with large datasets and feature sefs to discover hidden patterns has proved
extremely applicable to the area of malware detection. Malware can be defined as a program that
performs malicious behavior, compromises the secunty of the system, or performs a function
agaimst the wishes of the user. The spread of malware represents an increasing threat to
maintaining the security of cyber systems. According to the Symantec Global Internet Security
Threat Report, there were over 5.000 reported vulnerabilities in 2012[28].

As mentioned in the previous section. traditional signature based detection is a standard approach
for finding and detecting malicious behavior on a system. However, these methods are inherently
less effective for detecting novel and polvmeorphic malware. Signature based detection cannot
reliably detect new malware until after it has been identified and given a signature. Polvmorphic
malware attempts to continuously modify itself in order to evade detection from a previously
assigned signature. These concepts pose a serious challenge to existing anti-vims solutions.

Automatic detection of malicious code is a common application of data mining technigques. One
method for this detection is through the mining of auspicious binary executables. In order to
perform this analysis, appropriate features mmst be selected to defermine whether the sample is
benign or malicious. These features mav include a list of function calls, strings, headers, byte
sequences, or other attributes of the binary [29]. These features can then be processed and fed
mto a classification algorithm. Some methods assign each sample a classification probability
based on the Naive Bayes algorithm. a rules based classifier, or a multi-classifier system [29].
Onulette et al. proposed deep learning algorithms to classify related malware families using a
more comprehensive understanding of the malware’s intrinsic properties [30].Others have
developed solutions which extract n-gram features from both binary and assembly code [31].

Approved for Public Release; Distribution Unlimited.
T

Approved for Public Release; Distribution Unlimited.
51

Amnon-trivial challenge of these approaches is finding and extracting relevant and nseful features
for the data mining Another challenge of these approaches 1s that it can only classify new
malware samples based on previous known samples. Also, various obfuscation techniques
aftempt to hide the true intent of the malicious code to skirt detection. In order to overcome these
challenges, some solutions look for relevant features in a dynamic environment. These systems
may search for anomalies within network traffic or other previously unseen behavior patterns.
Thuraisingham et al. developed models using support vector machines to detect intrusions or
malicious behavior based on deviations from normal network patterns [31]. In order to defect
novel classes, Masud et al. proposed techniques for the detection of concept-drifis in data
streams, which may be applied fo the domains of network intrusion or fault detection [32]. These
approaches nmst continually refine their techniques to gain acceptable detection and false
positive rates. Since these detection methods are typically utilized with the oversight of a hmman
analyst, a high false positive rate will quickdy canse fiustration for both the analysts and end
users.

Although few commercial IDPS products currently wtilize data mining, this is a topic of growing
wmmportance with a large (and growing) corpus of research supporting its use. As the number and
complexity of existing exploits mncreases and it becomes easier and easier to morph and
obfuscate attacks. most common [DPSs which rely on an updated database of known attack
signatures will become less effective. Data mining techmiques for learning generalized patterns
mdicative of atfacks will soon become more prevalent and effective.

Data Mining for Improved Cyber Situational Awareness

Handling cyber threats unavoidably needs to deal with uncertainty and imprecise information.
What is observed as potential malicious activities can seldom give vs 100% confidence on
important questions about which machines have been compromised. the extent of damage that
has been mcurred, and who and why the systems have been targeted. It is through Social
Network Analysis (SNA) that some of these questions mav be answered. Again this is a very
complex problem which nmst fake info consideration a wealth of information from mulfiple
SOULCEs.

Efficient and reliable analysis of such large datasets 15 a challenge faced by both mtelligence
agencies and law enforcement. Data mining can yield results which would be impractical or
impossible through manual efforts alone, due to the massive amount of relevant data available.
These techniques are often performed semi-autonomonsly, delivering additional support for
hnman analysts. Within the cyber securnity field. data mining processes may be applied in the
defense of computer nefworks and cyber infrastructure to identify malicious actors or
organizations that pose a threat. In addition, if some threatening entities have already been
identified, then these techniques may be applied to expand the search in order to identify other
related attackers.

Data mining provides the ability to correlate and condense data into a social network structure, in
order to discover patterns and relationships between humans, organizations, or other entities. By
representing a social network as a graph. with entities as nodes and relationships as edges,
automated techniques can provide deeper insight info the social relationships present within that

Approved for Public Release; Distribution Linlimited.
]

Approved for Public Release; Distribution Unlimited.
52

system. SNA techniques help the human analyst discover interesting factors or patterns that have
previously unrecognizable. SNA provides mathematical constructs to model and predict useful
patterns of social interactions. This analysis can greatly bolster the efforts of human analysts by
identifying areas of interest, spotting emerging leaders, and predicting behavior. Krebs utilized
SNA to identify core members of a terrorist network involved in the 8/11 attacks [206]. In this
example, the relationships and structure were built from surveillance data released by
government authorities and publicly available information on the web. This analysis discovered
strong mutual connections between the hijackers, while also revealing an emerging leader within
the network structure [33].

In addition to discovering individual entities within a social networle, analysis can reveal the
strength and influence of a network as a whole. Shang et al. developed an indicator model that
measures the degree of connectivity of a network in order to find and predict criminal networks
[34]. Igbal et al. demonstrated the feasibility of the collecting online chat logs, identifying topics
of conversation, and analyzing these messages for possible criminal activity [35]. Chen et al.
developed techniques to identify strong subgroups within a network, and to find central members
within a subgroup of a potential criminal network [36]. These data mining processes can provide
kev information in developing a clear understanding of the social dynamics in play within the
social network.

In addition to passively understanding the social commections. this analysis can also provide
direction for actively influencing the social network. This intelligence may help determine a
course of action produce a desired effect within the organization. For example, if the key
members of an organization can be identified, then crucial lines of communication may be
miercepted or denied fo alter the effectiveness of the group. Other techniques mayv be applied to
relevant areas of the graph to achieve a certain desired effect.

This social network analysis often relies heavily on the mining of large datasets to construct
these networks. Public social media sites are a commeon source for this data. Lau et al. produced
mining methods which discovered both mnplicit and explicit relationships derived solely from
public social media sites, through extracted words supplied to a probabilistic model [37]. While
this analysis can be extremely powerful. it depends strongly on the quality of the data collected.
If the data is biased, misrepresented, or incorrect, the results will similarly be erroneous.

Emerging Challenges for Data Mining in Cyber Operations

Modern and emerging networks are rated by the amount of billions of bits they can transport in a
second, which uses the metric prefix of giga- to represent a one billion nmltiplication factor. A
common rating of network bandwidth is the term Gigabit, and this rate 15 abbreviated as Gbps or
Gb/s. In a single minute there can up to 60 Gigabits transferred, which is equivalent to 7.5 Giga
Bytes and is close to 1.5 DVDs worth of content. This number seems impressive at first, but
quickly becomes shadowed when considering there are 1440 minutes in a day, and the
ratification of the IEEE standard 803 3ba defines both a 40 Gb/s and 100Gb/s network [39]. Ina
single day, at a maximum sustained bandwidth of 100 Gb/s, over 219,142 DVDs worth of
content could be transferred. These Internet bandwidth speeds are slowly moving to replace
commercial infrastmcture as the status quo. Google Fiber advertises it is 100 times the speed of

Approved for Public Release; Distribution Unlimited.
2

Approved for Public Release; Distribution Unlimited.
53

broadband connections and 15 only at a bandwidth of 1 Gb/s [40]. However, there 13 a growing
threat in cyberspace that will be able to block network traffic even at these high data rates

History was made in February 2014 when the largest ever Distributed Denial of Service (DDoS)
attack was recorded by Cloudflare Incorporated [40]. Cloudflare is a content distribution network
that hosts websites and applications for Internet users. The company recorded an attack of over
400 Gigabits per second against one of its hosted sites from a series of 4,520 vulnerable NTP
servers [41]. Cloudflare also reports that Network Time Protocol (NTP) DDoS attacks see an
amplification factor, of cormpted input to malicious-amplified output, of over 200 fimes, and
thev have observed the Simple Network Management Protocol {SWNMP) protocol to have DDoS
attacks with an amplification factor of 630 times [42]. Even with the worlds expanding Internet
mfrastructure of Fiber technologies these DDoS attacks will be able to safurate a company's
Internet bandwidth, since they have currently shown an attack capability 4 times greater than the
maximum 100 Gbv/'s bandwidth. Considering Google Fiber's speed claims: the NTP DDoS is
400,000 times greater in size than modern broadband cable bandwidth. Ultimately, data mining
will be center stage in defense of growing DDoS and other unknown capabilities, since this focus
15 on massive amounts of data and bandwidth.

Analysts not leveraging data mining would become instantaneously saturated in extremely large
data sets if they were fo experience an NTP DDeoS attack. Sifting through information that was
being transmitted in a 1 Gb/'s connection, or higher speeds, would need data nuning to determine
what activities and actions are occurning within this space. Data mining would allow the
detection, determuination, and prevention of cyber threats, which would enable IDPS to nutigate
or even thwart such an attack. Any interesting scenano would be if an attacker was able to
combine a DDoS with the execution of malicious code. The DDoS would then be used to
obfuscate this malicious activity, and without data mining capabilities there could be a large
delay time in discovering this code if it occurred at all. Fufure data mining will need to be able to
be optinuzed in order to mitigate these near future cyber threat, and without leveraging data
mining there seems to be no other solutions that would be able to allow maneuverability during
an aftack.

Maneuverability 1s key to cyber operations for both parties in a conflict. A DDoS attack is
designed to effectively remove any movement of the target. Data mining could provide
mifigation strategies that would allow a target partial survivability, which would allow
transmission or even migration of operations fo a non-attacked platform. Having extended
periods of blocked transmissions in cyberspace could greatly cripple a system or asset with
respect to denial. disruption, degrading, and even deception. A Eey feature of future defenses
must be able to survive and mitigate an attack to prevent a full stop of cyber maneuverability.

Furthermore new and different areas should start considering the application of data mining to
potential big data problems. According to Kamal and Muccio (2011) mission awareness is at the
heart of cyber situational awareness, which gives an understanding of mission to asset
dependencies. In light of these new threats. and having this goal of situational awareness. new
systems must incorporate data mining to stay relevant when analyzing big data. Having the
ability to understand and inferpret data through data mining will enable the ability to predict and
provide potential courses of actions to defense systems. Lastly, there are applications for data

Approved for Public Release; Distribution Unlimited.
10

Approved for Public Release; Distribution Unlimited.
54

mining in curent and fiture cyber modeling, simulation, and war gamung. From parficipating in
these events it has been observed that many Department of Defense war games rely heavily upon
analyst input and interpretation of data. The addition of data mining in war games could provide
a deeper analysis of the results, or even add the potential of multiple iterations of scenarios
where currently there are only a few iterations. The application of data mining to cvberspace is
endless, but it provides a greatly exciting future to all of those involved.

Bibliography

1) Jabbour, Kamal and Sarah Muecio. "The Science of Mission Assurance " Journal of
Strategic Security 4.2 (2011).

2} Han, Jiawei, Micheline Kamber, and Jian Pei. Data mining: concepts and technicques.
Morgan kanfmann, 2006.

3) Applegate, Scott D). "The principle of maneuver in cvber operations.” Cyber Conflict
(CYCON), 2012 4th International Conference on. IEEE. 2012,

4) Gregorio-de Souza, Jan. et al. "Detection of complex cyber attacks.” Defense and
Security Symposinm. Infemational Society for Optics and Photonics, 20086,

5) Grant, Tim. Ivan Burke, and Renier van Heerden. "Comparing Models of Offensive
Cryber Operations.” Proceedings of the 7th International Conference on Information
Warfare and Security: Ieiw 2012, Academic Conferences Limited, 2012

6) Villars, Richard L . Carl W. Olofson, and Matthew Eastwood. "Big data: What it is and
why you should care.” White Paper. IDC (2011).

7) Barreno, Marco, et al. "Can machine leamning be secure?." Proceedings of the 2006 ACM
Symposmm on Information, computer and comnmmications securnity. ACM, 2006,

8) Barreno, Marco, et al. "The security of machine learming." Machine Learning §1.2
(2010): 121-148.

9) Sabahi, F., and A Movaghar. "Intrusion detection: A survey.” Svstems and Nefworks
Commumnications, 2008. ICSNC'08. 3rd International Conference on. IEEE, 2008.

100 Scarfone, Karen, and Peter Mell. "Guide to intrusion detection and prevention systems
{1dps)." NIST Special Publication 800.2007 (2007): 94,

11YHan, Hong, Xin-Liang Lu, and Li-Yong Ren. "Using data nining to discover signatiures
in network-based intrusion detection.” Machine Learning and Cvbernetics, 2002
Proceedings. 2002 International Conference on. Vol. 1. [EEE, 2002.

12)Lee, W.. & Stolfo, S. I (1998). Data Mining Approaches for Intrusion Detection.
Proceedings of the 7th USENIX Security Symposium. San Anfonio.

13) Tsai, Chih-Fong, et al. "Intmsion detection by machine leaming: A review." Expert
Systems with Applications 36.10 (2009): 11994-12000.

14) Dartigue, Christine, Hyun Ik Jang, and Wenjun Zeng. "A new data-mining based
approach for network infrusion detection.” Comnmnication Networks and Services
Research Conference, 2009, CNSE09. Seventh Anmual. IEEE. 2009.

15) Michalski, Foyszard 5., Ivan Bratko. and Avan Bratko. Machine Learning and Data
Mining: Methods and Applications. John Wiley & Sons, Inc., 1208

16) Theodoridis, 5., & Koutroumbas, K (2006). Pattern recognition. Amsterdam Boston,
Heidelberg, London. New York, Oxford. Paris, San Diego, San Francisco, Singapore,
Sydney, Tokyo: Academic Press

Approved for Public Release; Distribution Unlimited.
1

Approved for Public Release; Distribution Unlimited.
55

17)Bishop, C. M. (1993). Neural networks for pattern recognition. Fngland: Creford
University.

18) Mitchell, T. (1997). Machine learning. New vork: McGraw Hill.

19y Vapnik V. (1998). Staftistical learning theory. New York: John Wiley.

20y Haykin 5. (1999). Neural networks: A comprehensive foundation (2nd ed). New
Jersey: Prentice Hall

21y Eochonen T. (1982). Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43, 5060,

22)Breiman L Friedman J H. Olshen B A & Stone, P. I (1984). Classification and
regressing trees. California; Wadsworth International Group.

23) Pearl, JTudea. (1988). Probabilistic reasoning in infelligent systems. Morgan Kaufmann

24 Eoza, J. B (1992). Genetic programming: On the programming of computers by means
of natural selection. Massachusetts: MIT.

25) Zimmermann H. (2001). Fuzzy set theory and its applications. Kluwer Academic
Publishers.

26)Jang, J.-S., Sun, C.-T., & Mizutam, E. (1996). Neuro-fuzzy and soft computing: A
computational approach to learning and machine intelligence. New Jersey: Prentice Hall

2Ty Eittler, .. Hatef M. Duin, R P. W, & Matas, I (1998). On combining classifiers. [EEE
Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226-239.

28) Symantec. 2013 Internet Security Threat Report. Violume 18 Vol. . 2013, Print.

20y Schmltz, M. G, et al. "Data Mining Methods for Detection of New Malicious
Executables”. Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE
Symposium on. Web.

30 Ouellette, 7., A. Pfeffer, and A Lakhotia. "Countering Malware Evolution using Cloud-
Based Learning”. Malicions and Unwanted Software: "The Amernicas” (MALWARE),
2013 8th International Conference on. Web.

31) Thuraisingham, B. "Data Mining for Malicious Code Detection and Security
Applications". Intelligence and Security Informatics Conference (EISIC), 2011 Ewropean.
Web.

32y Masud, M. M., et al. "Classification and Nowvel Class Detection in Concept-Drifting Data
Streams Under Time Constraints " Enowledge and Data Engineering. IEEE Transactions
on23.6 (2011): 839-74. Web.

33) Erebs, Valdis E. "Mapping networks of terrorist cells." Connections 24 3 (2002): 43-32.

34) Xufeng Shang. and Yubo Yuan. "Social Network Analysis in Multiple Social Networks
Data for Crininal Group Discovery”. Cyber-Enabled Distnibuted Computing and
Enowledge Discovery (Cyber(C), 2012 International Conference on. Web.

35)Igbal. F.. B. C. M. Fing, and M. Debbabi. "Mining Criminal Networks from Chat Log".
Web Intelligence and Intelligent Agent Technology (WI-IAT), 2012 TEEEWIC/ACM
International Conferences on. Web.

36) Chen. Hsinchun, et al. "Crime data mining: an overview and case studies.” Proceedings
of the 2003 annual national conference on Digital government research. Digital
Government Society of North America, 2003.

37 Lan, B Y. K., Yunging Xia, and Yunming Ye. "A Probabilistic Generative Model for
Mining Cybercriminal Networks from Online Social Media " Computational Infelligence
Magazine, IFFFE 9.1 (2014): 31-43. Web.

Approved for Public Release; Distribution Unlimited.
12

Approved for Public Release; Distribution Unlimited.
56

38)Fayvad, U, Piatesky-Shapiro, G., Smyth, P., and Uthumsamy, B (Eds.). 1996, Advances
in Knowledge Discovery and Diata Mining, AAAT Press, Cambridge

3N McCabe, Karen. "TEEE-5A - IEEE Launches Next Generation of High-Fate Fthemet
with New IEEE 802 3ba Standard " IEEE Standards Association. Institute of Electrical
and Electronics Engineers Standards Association, 26 May 2010. Web. 21 Feb 2014
https://standards ieee org/mews 2010/ ratification8023ba html.

40) Prince, Matthew. "Technical Details Behind a 400Gbps NTP Amplification DDoS
Attack " Cloudflare, Inc_ 13 Feb 2014. Web. 21 Feb 2014,
hitp://blog.clondflare com/technical-details-behind-a-400gbps-ntp-amplification-ddos-
attack.

41) Graham-Cuomming . John . "Understanding and mitigating NTP-based DDao5 attacks.” .
Cloudflare, Inc, 9 Jan 2014. Web. 21 Feb 2014. http://blog cloudflare. com/understanding-
and-mitigating-ntp-based-ddos-attacks.

42) Google Fiber Inc. "Plans and Pricing " 2014. Web. 21 Feb 2014,
https://fiber. google com/cities/ kansascity/plans.

Approved for Public Release; Distribution Unlimited.
13

Approved for Public Release; Distribution Unlimited.
57

APPENDIX B - Evaluating data distribution and drift vulnerabilities of machine learning
algorithms in secure and adversarial environments (SPIE DSS 2014)

Evaluating data distribution and drift vulnerabilities of machine
learning algorithms in secure and adversarial environments

Kevin Nelson?, George Corbin?, Dr. Misty Blowers”
3BAE Systems, 581 Phoenix Drive, Rome, NY, USA 13441; PAir Force Research Laboratory,
525 Brooks Rd., Rome, NY USA 13441

Abstract

Machine learning is continuing to gain popularity due to its ability to solve problems that are
difficult to model using conventional computer programming logic. Much of the current and past
work has focused on algorithm development, data processing, and optimization. Lately, a subset
of research has emerged which explores issues related to security. This research is gaining traction
as systems employing these methods are being applied to both secure and adversarial
environments. One of machine learning’s biggest benefits, its data-driven versus logic-driven
approach, is also a weakness if the data on which the models rely are corrupted. Adversaries could
maliciously influence systems which address drift and data distribution changes using re-training
and online learning. Our work is focused on exploring the resilience of various machine learning
algorithms to these data-driven attacks. In this paper, we present our initial findings using Monte
Carlo simulations, and statistical analysis, to explore the maximal achievable shift to a
classification model, as well as the required amount of control over the data.

Keywords: Adversarial Machine Learning, Intrusion Detection, Monte Carlo, Hidden Markov
Models

Introduction

The primary job of a security administrator is to secure resources at every level from unauthorized
access and intrusions. It is critical to any organization to secure the network against adversaries
both external and internal. In the course of implementing defensive measures for network
protection against malicious adversaries, an administrator needs to understand the approach
adversaries take in trying to compromise their systems. This knowledge goes a long way towards
enabling the administrator to harden the network against unauthorized access and intrusions.
Increasingly, Machine Learning-based Intrusion Detection Systems (ML-IDS) are used in this
capacity®. An ML-1DS uses machine learning (ML) techniques to analyze network traffic to create
a model which specifies either general patterns of normalcy or those indicative of an intrusion. It
is important to have a greater understanding of the strengths and weaknesses of common ML
algorithms in order to optimize defensive capabilities of ML-IDS. This paper discusses the risks
involved with utilizing ML in an adversarial environment, such as intrusion detection, and presents
an evaluation of a toy example, an anomalous color detector which utilizes Hidden Markov Models
(HMMs).

Background
Machine learning and data/concept drift

Machine learning is a branch of artificial intelligence which focuses on allowing a computer to
learn representative patterns and rules from sample training data or past experiences which may

Approved for Public Release; Distribution Unlimited.
58

be generalized to solve specific problems. An ML system becomes better at its job over time by
iteratively performing its operations.

Often, an ML system is burdened with large non-stationary streams of data that drift over time®°.
This is also referred to as “concept drift.”%%%% This is a concern as it means that new data is being
provided that may inadvertently be misclassified by an outdated model. The solution is to include
re-training for the ML system into the other ongoing processes in place to maintain classification
and prediction accuracy. This will ensure that user interactions with changing functions are
included in the models used by the ML system. When ML is used in applications which utilize
continuous cycles of retraining and model updating from new data input they are referred to as
online ML.

Machine learning in an adversarial environment

Unfortunately, ML systems sometimes operate in environments that include an adversary. Such
environments commonly listed in other research include Spam filtering®, Intrusion Detection
Systems® and fraud detection systems®. These are environments in which an opponent would gain
an advantage by finding a way to avoid or otherwise subvert the established ML system.
Adversarial learning takes place when an ML system undergoes training with data collected from
an adversarial environment®. In nearly every case, there is no known or obvious opponent that is
providing adversarial data to an online ML system’s training data. In an unsupervised ML system,
there is the possibility of such data effectively poisoning the training dataset and thus introducing
a weakness that must be mitigated®. Often, as mentioned above, ML systems utilize retraining and
online learning to account for general concept drift and to avoid a high rate of false positives,
which further expands the risk of an adversary tainting the training data. This is a factor that few
ML researchers take into account while developing new algorithms and techniques. Recently
however, this topic has begun to gain traction and the field of adversarial ML has begun to emerge.
Specifically Huang et al define adversarial ML as “the study of effective machine learning
techniques against an adversarial opponent.”®

Intrusion detection systems

Of the several adversarial environments where we find ML used, the IDS is the most exciting and
undergoing the greatest change in research. The two ways a network and its resources can be
secured are to: a) preventatively implement rules/policies for use and apply patches to applications
to avoid obvious and readily fixed flaws in security; b) provide a reactive system to intercept
security violations as they are occurring. An IDS is one such reactive measure. An IDS is an
application, and in some cases an appliance, that is designed to monitor network and/or computer
system operations. The IDS is designed to monitor for malicious activity or other usage policy
violations which may present a security threat to the network or computer system being monitored
and is given rules for how to respond to these violations based upon severity®. The technique used
by an IDS to detect malicious activity falls into one of two categories: signature-based detection
or anomaly-based detection. Signature-based detection, also known as misuse detection, examines
network traffic and log files, searching for specific patterns, or signatures, that are known to be
indicative of an intrusion®. An anomaly-based IDS utilizes a baseline of normal network behavior,
which it either learns or has specified by an administrator. This baseline is made up of heuristics
or rules that describe what constitutes normal behavior®. Intrusions are then identified by detecting
a statistical divergence from the norm, rather than looking for specific signatures.

Machine learning-based intrusion detection

Approved for Public Release; Distribution Unlimited.
59

An IDS that uses ML to handle creation of rules and processing of data according to those rules is
called an ML-IDS. Ariu identifies protecting web applications with IDS as necessary and a “tricky
task” as “they are in general large, complex and highly customized.” Ariu further states that
signature based IDS are not able to defend adequately in the face of zero-day attacks and the
complex rules that would be required for complex web applications. As he suggests, anomaly-
based solutions have the greatest potential and these are found in ML-IDS®. Barreno et al. agree
with this assessment as they see the strength of an ML-IDS is in being able to identify “novel
differences in traffic.”® ML techniques have proven to be effective for anomaly-based intrusion
detection, as they provide a method for automatically learning a model of normalcy that new
incoming traffic can be evaluated against®. As the field of ML continues to explode in popularity,
and as anomaly-based IDSs continue to become more in demand due to their ability to detect never
before seen attacks, ML-IDSs will soon become much more prevalent’.

ML-IDS in an adversarial environment

Unfortunately, IDSs tend to operate in an adversarial environment in which an opponent would
reap a great benefit by cleverly causing misclassifications, an aspect which most ML researchers
do not take into account. The greatest concern, as suggested above, is that data drift will be
introduced to the training data for an ML-IDS which uses unsupervised learning. This could result
in creating rules which overfit the training data leading to false positives due to concept drift or,
worse yet, new training data at the edges of the detection domain producing new models which
allow previously flagged malicious communication to be allowed by the IDS°. This last concern
is the greatest threat to a network’s defense and is the threat the simulations in this paper are
concerned with understanding better. There are essentially three sources we have identified that
may cause data drift:

1. Random noise and concept drift from the network and users

2. Adversarial drift due to nonspecific malicious probing exploring the network which is
building what a penetration tester calls a “footprint” of the network®®

3. Adversarial drift due to specific targeting of the network by an adversary in a persistent
and threatening manner trying to measure the efficacy of rules and possibly even to insert
edge data to influence training to later allow malicious connections as authentic®

The goal of an ML-IDS is to provide accurate protection which is robust and uses generalized
models. In order to do this, it must accurately differentiate between normal data drift and noise,
leaving the resources defended uncorrupt and uncompromised. Thus, due to the increased
prevalence of anomaly-based ML-IDSs operating in adversarial environments, it is our belief that
it is essential to analyze the underlying anomaly detection ML algorithms utilized by these IDSs
to determine their resilience to adversarial drift.

Adversarial ML taxonomy

Barreno et al. created a taxonomy to categorize potential attacks an adversary may employ against
an ML system. Table 1 below is reproduced from the paper “The security of machine learning.”®

Table 1: Taxonomy of attacks against ML systems with examples (captured from Barreno
et al.%)

Approved for Public Release; Distribution Unlimited.
60

Causative:

Targeted

Indiscriminate

Integrity

Availability

The infrusion foretold: mis-train a par-
ticular intrusion

The rogue IDS: mis-train IDS fo block
certain traffic

The mirusion forefold: nus-frain any
of several intrusions

The mogue IDS. mis-fram IDS to
broadly block traffic

Exploratory:
Targeted

The shifty infruder: obfuscate a chosen
mtrusion

The mistaken idenftity: censor a partic-
ular host

The mistaken idemtity: interfere with
traffic generally

The shifty infruder: obfuscate any in-

Indiscriminate .
trsion

This taxonomy was designed to address how an attack can affect the ML system. An attack has
three dimensions: the Influence, the Security Violation and the Specificity of the attack. Influence
is either causative or exploratory; the Security Violation attacks either integrity or availability; and
the Specificity is either targeted or indiscriminate®.

Integrity of the system is a measure that demonstrates the authenticity of data as having not been
altered from origination or otherwise corrupted by malicious or accidental means. An Integrity
attack is destructive in nature. Availability is a measure that represents how readily the data is
accessed and used as intended by authorized users for intended and authorized purposes. An
availability attack is a denial of service, either specific or large-scale®.

The approach adversaries use may be causative, in which they take actions to bring about changes
in the learning model through influence over the training data, or else exploratory in which their
actions simply probe/investigate for potential weaknesses that can be exploited with another
action. These causative and exploratory actions can be of two forms: targeted and indiscriminate.
Targeted and indiscriminate attacks differentiate in their specificity and scope.

A targeted causative attack against integrity is an attack which chooses a specific intrusion and
attempts to alter the ML training to make the ML system model allow this specific intrusion. This
type of attack has been addressed very little in existing research. Therefore, we believe that it is
essential to study the risk of an ML algorithm to such an attack. The remainder of this paper details
initial experiments to analyze the risk to an HMM algorithm, the results of which may be built
upon for future experiments and analysis.

Experiment
Goals

Our work focused on evaluating an anomaly-based ML algorithm's resilience to targeted causative
integrity attacks. Under this type of attack, an adversary attempts to cause a specific point which
is otherwise classified as anomalous by the learning model to be misclassified as normal through
influence over the training data. The initial experiment focused on evaluating the extent to which
an adversary could affect the algorithm's model and the amount of control an adversary would
require over the training data in order to cause misclassifications in the resulting learning model.

Assumptions

Approved for Public Release; Distribution Unlimited.
61

In a true adversarial environment, the amount of information available to an adversary is often
limited. It is reasonable to assume that the attacker will not know the exact data set used for
training the classification model. However, an attacker may very well be aware of general trends
in the data and what generally represents “normal” data. For example, in the field of spam
detection, “clean” words tend to stay somewhat constant from organization to organization and
common spam databases are freely available online to give an idea of what is generally flagged.
From this, a clever adversary may be able to create a plan for tricking a spam filter. Therefore, in
our experiments, we assume that our “normal” data used to train the classifier comes from a
probability distribution which the adversary is aware of. Our initial experiments utilize training
data consisting of numerical values randomly generated from a Gaussian (normal) distribution.

Additionally, our experiments were run under the contamination assumption® — the adversary is
able to send points that the algorithm will use during training. This assumption was implemented
in two different ways. In the first scenario, the adversary is able to arbitrarily add custom points
to the training set as desired. This may be the case if the attacker somehow has access to the
database and wishes to discreetly add points, or if the adversary has knowledge of when initial
data collection and training will be taking place, before a classification model has been
implemented, and inserts specific training points at that time. This presents a worst case scenario
for the algorithm to defend against. In the second scenario, the algorithm is an online learner
which continually retrains with the new data presented to it. However, it only accepts data for
retraining which is classified as normal by the previously existing model. Therefore, any insertion
points must appear to be benign, presenting a greater obstacle for an adversary.

Monte Carlo simulations

Since our experiments rely on randomly generated data from a distribution, Monte Carlo
experiments are used to obtain results. Monte Carlo experiments find solutions to problems by
accumulating and aggregating the results of multiple runs using random data from the same
probability distribution, also known as repeated random sampling. Due to time and equipment
constraints, the number of iterations used in our experiments was limited.

Hidden Markov Models

Our initial experiments focused on the evaluation of Hidden Markov Models (HMMs), an ML
algorithm commonly used for anomaly detection. An HMM consists of hidden states which follow
the Markov property and have associated initial and transition probabilities. In addition, an HMM
consists of observed variables, with each variable having a certain probability of occurring in each
hidden state. Sequences of observed variables are used to train the HMM and learn the hidden
state and observed variable probability matrices. Once learned, these probabilities are used to
determine the probability score of new test observation sequences’. Again, due to time and
equipment limitations, other ML algorithms are not evaluated in this paper. However a general
approach has been created as a result of this work, which will greatly simplify future suggested
evaluations.

Experiment setup

In order to illustrate the above concepts and concerns, we conducted experiments utilizing an
anomaly detector designed to classify color values as either normal or anomalous based on their
RGB values. The RGB value of a color is the extent of red, green, and blue the color contains,
represented as integer values between 0 and 255 inclusive. Therefore, each training point is a

Approved for Public Release; Distribution Unlimited.
62

vector of integers of length three. Each training point's red, green, and blue values were sampled
from a Gaussian distribution with a mean of 127 and a standard deviation of 30. Figure 1 displays
2000 colors randomly sampled from this distribution, plotted on the Cartesian axes. The X axis
represents the red value, the Y axis represents the green value, and the Z axis represents the blue
value.

Figure 1: 2000 random colors from a Gaussian distribution

The classifier is then created by using color values sampled from this distribution to train an HMM.
Future points are tested against the resulting HMM and given a probability score. If the score is
below a certain threshold, then the point is classified as anomalous. Repeatedly training HMMs
with points from this distribution, and then testing the probability scores of points from the same
distribution against the resulting model, consistently revealed 9.0x10° to be an appropriate
threshold value which would cause points close to the mean to be classified as normal and those
far from the mean to be classified as anomalous. This threshold value was used for all subsequent
experiments.

The JAHMM library® was used in our experiments to train and test the HMM models. We chose
to use three hidden states and used a K-Means clustering based learner to initialize the probability
matrices. The Baum-Welch algorithm is then run for ten iterations to fully train the HMM and the
forward algorithm is used to determine the probability of new points.

Two separate targeted causative integrity attacks were investigated. The first involved an
adversary who desires for the color green-yellow (RGB value of [173, 255, 47]) to be classified as
normal, and in the second, the adversary desires goldenrod (RGB value of [255, 193, 37]) to be
classified as normal.

Results and discussion

Initially, experiments were carried out to determine the probability score of the adversary’s colors
when tested against an HMM trained with a varying number of points sampled from the Gaussian
distribution. For each training set size, 100 iterations of sampling, training, and testing were run.
The mean and median values of those iterations are presented in Figure 2. These experiments
revealed that the test score of the points is not dependent on the number of points in the training
set. Therefore, the same threshold value may be held constant for all ensuing experiments with
this distribution, regardless of the number of points used. The average probability score of green-
yellow over all experiments was 1.60x10! and the average probability score of goldenrod was
1.75x102, each of which is well below the set threshold value of 9.0x10°. Also of note, is that

Approved for Public Release; Distribution Unlimited.
63

the median score for both colors remained at a value of zero until there were roughly 24,000
training points. This is due, in part, to the mechanics of an HMM. If any of the test point’s values
were not seen during training, then the test is much more likely to return a probability of O for the
entire point. For example, if a value of 255 is not encountered during training, then both green-
yellow and goldenrod will likely have a probability of 0. As the number of training points
increases, the likelihood of encountering each value in the test colors at least once increases.

Green-yellow Goldenrod

3.00E-11

2.50E-11

2.00E-11 ‘ i
Ly ot
1.50E-11 H vw v w e
——Median

1.00E-11

2E-12

1.5E-12

1E-12 /

5E-13
5.00E-12 ’

—

Probability Score
Probability Score

0.00E+00 o T T T T T T T T T 1
o 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 0 10000 20000 30000 40000 50000 60000 70000 SO000 OO000O 100000

Number of Points in Training Set Number of Points in Training Set

Figure 2: Initial probabilities of selected anomalous points

Next, experiments were conducted to determine the effect an adversary could have through the
insertion of a single point, in terms of causing the chosen outliers to appear more probabilistically
normal. Our first implementation of the contamination assumption was used during this
experiment, meaning that the adversary was free to add any arbitrary point to the training data set.
The point which would have the greatest impact on the HMM’s ability to detect the specific
anomaly was determined by solving the following equation:

. _ argmax

x g(xo)x - g(xo)

@)

where x represents a potential insertion point, xo represents the attacker’s chosen anomaly, g(Xo)
represents the probability of xo according to the HMM trained with its current training set, and
g(Xo)x represents the probability of xo according to the HMM trained with point x injected into the
training set.

A particle swarm optimization algorithm® was used to quickly find a rough solution to the equation.
PSO works by placing a certain number of “particles” into the solution space which then, for a
certain number of iterations, travel to new locations searching for an optimal solution. Particle
movement is dictated by mathematical calculations based on the particle’s position and velocity,
the best point seen by the particle, and the best point seen by any particle. The PSO was
implemented using the JSwarm library, and was configured to use 20 particles and run for 20
iterations.

The training set consisted of a varying number of color values sampled from our Gaussian
distribution in order to determine the correlation between training set size and the adversary’s
ability to alter an anomalous point’s probability with a single insertion point. For each training

Approved for Public Release; Distribution Unlimited.
64

set, the HMM was trained and the anomalous point’s probability score was determined. Then, an
insertion point was determined by solving equation 1 using PSO, the point was added to the
training set, the HMM was retrained, the anomalous point’s new probability score was computed,
and the difference between the two probability scores was calculated. For each training set size,
10 iterations were run, and the mean values of those iterations are displayed in Figure. The results
reveal a function nearly identical to the one displayed in the following equation:

eff =c*n7?!
)

where eff is the maximum effect of a single point, ¢ is a constant, and n is the number of points in
the training set.

The effect that an adversary can have on the probability score of an anomalous point using a single
insertion point has an almost perfect inverse relationship with the number of points in the training
set. This negative correlation implies that increasing the size of the training set may mitigate some
of the risk of a targeted causative attack against an ML algorithm. However, the time and resource
cost of training an ML algorithm increases as the number of training points increases, and at some
point, this cost must be weighed against the potential impact of an adversary.

Greenyellow Goldenrod

200E-11

1.60E-10

l 1.80E-11
1.40E-10 \

160E-11

= 120E-10

s E
K] \/\ § 140811

§ 100810
g \

8.00E-11

6.00E-11

Effect of Single Inse:

400E-11

2.00E-11

TSN ———

0.00E+00
o 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Number of Pointsin Training Set

2 120811
i

1.00E-11

gle Ins:

£
& B.00E-12
]

E 6.00E-12
4 D0E-12

200E-12

0.00E+00

M

TV A

M ey

o 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Number of Pointsin Training Set

Figure 3: Effect of a single insertion point on selected anomalous points

Experiments were then run to determine exactly what effort would be required by an adversary in
order to trick the HMM into believing that the chosen anomalous colors were, in fact, normal. The
goal of the experiment was to learn how susceptible an HMM is to a targeted causative integrity
attack. In the first set of trials, the adversary is again given the ability to arbitrarily add points to
the training set. It is assumed that points can only be added to the data set, not removed, and that
the adversary is the only one adding data. For varying size training sets, the process described in
Figure 4 is followed in order to determine the number of points an adversary would have to inject
in order to cause the desired misclassification. In the process, | is equal to the list of injection
points selected by the adversary, g(xo): is equal to the probability of xo according to an HMM with
| injected into the training set, and vy is equal to the probability threshold.

Approved for Public Release; Distribution Unlimited.
65

initialize I = &
while g(xg); <y

argmax
x*= gx g(xg)rsx — Q(xo}f
addxto]

refurn |

Figure 4: Process to determine effort required by adversary under scenario 1

For each training set size, this iterative process was carried out 10 times, and the results were
aggregated. Figure 5displays the mean values of these runs. The relationship between the size of
the training set and the number of insertion points required to create a misclassification is relatively
linear, which implies that increasing the amount of points in the training set will steadily increase
the amount of points necessary for an adversary to force specific misclassifications. However, the
percent of control over the training set that the attacker needs remains fairly constant. In order to
force green-yellow to be misclassified, the attacker needed to insert 0.3701% of the original
training set on average and in order to force goldenrod to be misclassified, the attacker needed to
insert 0.7344% of the training set on average. The number of points necessary to insert and the
percent of the training set necessary to control appears to be related to the initial probability of the
anomalous point. Goldenrod, which had a lower initial probability, required nearly twice as much
control over the training set.

120
110

100

Green-yellow Mean

Goldenrod Mean

Number of RequiredInsertion Points
58 8 & & B

0 1000 2000 3000 4000 OO0 6000 OO0 HOOD 000 10000 11000 12000 15000 14000 15000

Number of Points in Training Set

Figure 5: Effort required by adversary to cause misclassification of selected anomalous
points under scenario 1

The contamination assumption was then limited somewhat for the next set of experiments. In
these trials, it is assumed that a classification model has already been trained and is operational,
and that the adversary does not have direct access to the data base. The classifier uses an online
learner which continually retrains when presented with new input, but only if the new input is
classified as normal by the existing model. This requires the adversary to craft points which appear
normal, but are designed to be similar to the selected anomalous point in order to slowly shift the
probability models of the learner, causing the anomalous point to appear normal. Under this
scenario, the process shown in Figure 6 was followed using various size training sets in order to
determine the number of points an adversary must insert to cause a specific misclassification.

Approved for Public Release; Distribution Unlimited.
66

initialize I = &
while glxgli <y

argmax
= T g (k) — g(xo)r .t g >
addx tol
return |I|

Figure 6: Process to determine effort required by adversary under scenario 2

Due to time and equipment limitations, this process was only carried out for 5 iterations for each
training set size. Figure 7 displays, for both target colors, the mean values of these iterations under
this scenario, as well as the results of the previous scenario for comparison. Again in this scenario,
there appears to be a linear relationship between the number of points in the training set and the
number of points an adversary must inject to cause the desired misclassification. However,
requiring that new input points be classified as normal before being used for retraining nearly
doubles the effort required by an adversary. On average, the adversary required 0.3701% control
of the training set in scenario one and 0.6153% control in scenario two in order to force a
misclassification of green-yellow. In scenario one, goldenrod required 0.7344% control of the
training set, and in scenario two it required 1.0981% control. The technique utilized in scenario
two of validating the normalcy of a point before including it in the training set offers a potential
strategy for mitigating the risk of a causative attack against an ML-based anomaly detector by
increasing the amount of control required by the adversary. This approach, however, may not
allow for natural concept drift, unless it is introduced slowly over time, without occurring too
drastically different from the norm.

Green-yellow Goldenrod
50 80
2 2
C 45 =
5 / .a 70
% 40 %
] / g &
i, 5 N
1} // @ A
£ AN £ =7
£ TN £
Q25 . a0
5 /JV —Scenario 1 Mean 5
T 20 VANLY . o
2 /J ,J"/ —Scenario 2 Mean @ =0
5 1 N I3 M
: AL o~ R
3 5 35 10
z F
0 o

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Number of Points in Training Set Number of Points in Training Set

Figure 7: Effort required by adversary to cause misclassification of selected anomalous
points under scenario 1 and 2

Also of note in these experiments is that if all values from the anomalous color do not appear at
least once during training, then it will be highly unlikely to achieve a probability score above zero.
For example, when the adversary’s target color is green-yellow, the values 173, 255, and 47 should
all be in the training set. If, let’s say, 255 did not appear in the training set, then all hidden states
in the HMM would likely have an associated probability of zero for that value, which would cause
any sequence of values containing 255 to have a probability of zero. The adversary would not be
able to change this via insertion, because any points containing 255 would be flagged. Therefore,
training sets where the anomalous point had an initial probability of zero were not considered in
these experiments, meaning that, on average, the anomalous point had a slightly higher initial
probability under scenario two than under scenario one.

Approved for Public Release; Distribution Unlimited.
67

Conclusions

In this paper, we discussed an emerging field of research known as adversarial ML. We argue that
due to its proven ability to discover and generalize patterns, ML will continue to become more
widely used in operational environments. However, these environments often include an
adversary, a challenge which is rarely accounted for during the development of the ML algorithms.
One such technology that utilizes ML in an adversarial environment is an IDS. It is essential that
an IDS remains secure, and we argue that understanding the potential for an adversary to subvert
the underlying ML algorithms is an important step towards improving a network’s defensive
capabilities.

We conducted base-line experiments in order to better understand and demonstrate what effort and
level of control over the training data an adversary would require in order to conduct a targeted
causative integrity attack against an ML algorithm. These experiments utilized a Hidden Markov
Model in order to detect anomalous colors based on their RGB values. Training data was drawn
from a Gaussian distribution and Monte Carlo simulations were run in order to provide aggregate
results. The experiments reveal an inverse relationship between the number of points contained in
the training set and the potential negative impact of a single insertion point. Additionally, there
appears to be a linear relationship between the number of points in the training set and the amount
of effort required by an adversary to cause a desired misclassification. The trends and conclusions
identified from these experimental results are summarized in Table 2.

Table 2: Trends and conclusions

Trend

Explanation

Larger training set improves
defensive capabilities

As the training set size increases, this increases the requisite number of points an
adversary needs to produce in order to induce adversarial drift. This increases
the effort required by the adversary to calculate the necessary points and to
introduce them into the actual data set.

Highly anomalous points
require more effort by the
adversary

The experiments showed that goldenrod, which had an average initial probability
of 1.75x107? required nearly twice as many insertion point as green-yellow
which had an average initial score of 1.60x10%,

Machine learning algorithms
not overly secure from
adversarial drift

In the experiments above, as the training set size increased, the amount of points
required by the adversary increased. However, the required percent control over
the training set remained relatively constant. This value was below 1% in the
first test cases despite the test points being considerably well below the anomaly
threshold.

Requiring insertion points to
be classified benign before
inserting into training set
increases adversary’s effort.

In the second set of experiments, we observed that the number of points required
by the adversary to cause adversarial drift at least doubles from the number
required in the first set.

Future research areas based on this research should include analysis of different ML algorithms to
verify the trends identified in this paper and datasets based on alternative data distributions and
feature spaces. Additionally, Barreno et al. describe various defensive measures which may be
utilized to harden an ML system®. These techniques include:

e Reject on negative impact (RONI) defense — measures effects of each training instance and
rejects points which are seen to have a negative impact on classification

Approved for Public Release; Distribution Unlimited.
68

e Robust algorithms — based upon Robust Statistics, the goal is to create a procedure which
will limit the impact of deviant points by accounting for qualitative robustness, the
breakdown point and the influence function of the procedure

e Online learning with experts — uses a set of classifiers each designed to provide a different
security property and predictions/advice for training

e Hide training data — if access to the training data is denied, an adversary is unable to
determine the exact decision boundaries of the models used by the ML so as to analyze a
way to bypass them

e Good feature selection — make classifiers difficult to reverse engineer through careful
selection of features which are kept secret and possibly even mapping raw features into a
different feature space altogether

e Limited/misleading feedback — provide feedback to attacker that provides as little
information as possible revealing their level/lack of success during the probing attack.

Future research should take into account and analyze these defensive measures and include an
investigation into the efficacy of the defensive measures when applied to specific ML algorithms.
Utilizing the analysis method described in the above experiments, future experiments may be run
in order to paint a better picture of the defensive capabilities of ML algorithms in adversarial
environments.

Approved for Public Release; Distribution Unlimited.

69

References

Ariu, D. “Host and Network based Anomaly Detectors for HTTP Attacks.” Diss. PhD thesis, PhD
Program in Electronic and Computer Eng. (DRIEI), University of Cagliari, Italy. (2010)

Kantchelian, A., et al. "Approaches to adversarial drift.” Proceedings of the 2013 ACM workshop
on Atrtificial intelligence and security. ACM. (2013)

Kantarcioglu, M., Xi, B., and Clifton, C. "A Game Theoretical Framework for Adversarial
Learning." CERIAS 9th Annual Information Security Symposium. (2008)

Dalvi, Nilesh, et al. "Adversarial classification.” Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM. (2004)

He, H., and Garcia, E. A. "Learning from imbalanced data.” Knowledge and Data Engineering,
IEEE Transactions on 21.9: 1263-1284. (2009)

Nelson, B., et al. "Exploiting Machine Learning to Subvert Your Spam Filter." LEET 8: 1-9.
(2008)

Kloft, M., and Laskov, P. "Online anomaly detection under adversarial impact.” (2011)
Barreno, M., et al. "The security of machine learning."” Machine Learning 81.2: 121-148. (2010)

Huang, L., et al. "Adversarial machine learning." Proceedings of the 4th ACM workshop on
Security and artificial intelligence. ACM. (2011)

Dua, S., and Du, X. Data Mining and Machine Learning in Cybersecurity. CRC press. (2011)

Ahmed, F., Johnson, T., and Tsui, S. "From measurements to metrics: PCA-based indicators of
cyber anomaly.” SPIE Defense, Security, and Sensing. International Society for Optics and
Photonics. (2012)

Corona, 1., Tronci, R., and Giacinto, G. "SuStorID: A multiple classifier system for the protection
of web services." Pattern Recognition (ICPR), 2012 21st International Conference on. IEEE.
(2012)

Chung, S. P., and Mok, A. K. "Advanced allergy attacks: Does a corpus really help?" Recent
Advances in Intrusion Detection. Springer Berlin Heidelberg. (2007)

Fogla, P., and Lee, W. "Evading network anomaly detection systems: formal reasoning and
practical techniques.” Proceedings of the 13th ACM conference on Computer and
communications security. ACM. (2006)

Rabiner, L. "A tutorial on hidden Markov models and selected applications in speech recognition."
Proceedings of the IEEE 77.2: 257-286. (1989)

Francois, J.-M. "JAHMM - Hidden Markov Model (HMM): An implementation in Java." URL.:
http://www.runmontefiore.ulg.ac.be/~francois/software/jahmm (2006)

Kennedy, J. and Eberhart, R. “Particle Swarm Optimization.” IEEE 0-7803-2768-3/95 (1995)

Approved for Public Release; Distribution Unlimited.
70

APPENDIX C - Evaluating Model Drift in Machine Learning Algorithms (IEEE CISDA
2015)

Evaluating Model Drift in Machine Learning Algorithms

Kevin Nelson, George Corbin, Mark Anania, Dr. Misty Blowers
Matthew Kovacs, and Jeremy Tobias Air Force Research Laboratory
BAE Systems Rome, NY, USA
Rome, NY, USA

Abstract— Machine learning is rapidly emerging as a valuable technology thanks to its ability
to learn patterns from large data sets and solve problems that are impossible to model using
conventional programming logic. As machine learning techniques become more
mainstream, they are being applied to a wider range of application domains. These
algorithms are now trusted to make critical decisions in secure and adversarial environments
such as healthcare, fraud detection, and network security, in which mistakes can be
incredibly costly. They are also a critical component to most modern autonomous systems.
However, the data driven approach utilized by these machine learning methods can prove to
be a weakness if the data on which the models rely are corrupted by either nefarious or
accidental means. Models that utilize on-line learning or periodic retraining to learn new
patterns and account for data distribution changes are particularly susceptible to corruption
through model drift. In modeling this type of scenario, specially crafted data points are
added to the training set over time to adversely influence the system, inducing model drift
which leads to incorrect classifications. Our work is focused on exploring the resistance of
various machine learning algorithms to such an approach. In this paper we present an
experimental framework designed to measure the susceptibility of anomaly detection
algorithms to model drift. We also exhibit our preliminary results using various machine
learning algorithms commonly found in intrusion detection research.

Keywords—adversarial machine learning; cyber security; intrusion detection systems; model
drift

Introduction

A security administrator maintains a constant vigilance over their network resources using a variety
of security tools. Most security plans include signature-based detection and prevention systems in
order to effectively protect against known threats and mitigate known vulnerabilities. While daily
updates and changes to security policy, processes, and functions tend to be minimal and focused
upon anticipating and intercepting system compromises, the administrator’s single greatest fear is
the threat of zero day exploits. Zero day exploits are based upon currently unknown and unpatched
vulnerabilities that conventional signature-based protections are not equipped to handle. Machine
learning based intrusion detection systems (ML-IDS) are increasingly being implemented to
account for the inadequacies of signature-based methods [1][2]. These machine learning (ML)
solutions are quickly becoming a popular choice due to ML’s ability to generalize, learn
representative patterns indicative of intrusions, create representations of normalcy, and detect
anomalies straying from the established models. Unfortunately, as these ML-IDS operate and learn
patterns in a highly contested environment, they become susceptible to corruption. Either through

Approved for Public Release; Distribution Unlimited.
71

inadvertent or deliberate means, corrupted data may be introduced into the learning model, resulting
in model drift [3][4]. This is a key limitation of ML systems and requires the developer to
understand the inherent weaknesses of the underlying learning processes.

In this paper, we present a systematic experimental framework based around Monte Carlo
simulations, designed to measure the resilience of machine learning algorithms to model drift. In
addition, we discuss the preliminary results of experimental iterations run against several anomaly
detection algorithms as well as the effects of model drift on an open-source intrusion detection
system which relies on these methods.

Background
Machine Learning

Machine learning is a branch of artificial intelligence which focuses on allowing a computer to learn
representative patterns and rules from sample training data or past experiences which may be
generalized to solve specific problems. Due to its advanced ability to automatically glean
meaningful information from large datasets, ML is quickly appearing more and more in fielded
systems. As it becomes more trusted, ML is increasingly being applied within secure environments
to make critical decisions and identify threats [4][5][6][7][8].

Intrusion Detection Systems

An intrusion detection system (IDS) is an application or appliance that is designed to monitor
network and/or computer system operations for malicious activity and other usage policy violations
that present a security threat to the monitored system. An IDS traditionally uses predefined rules
based on known threats in order to assess the severity of the threat and react accordingly. These
types of systems are known as signature-based IDSs. Alternative methods involving the use of
machine learning, however, have recently gained popularity and are expected to continue to do so
[4]. This is due to ML’s ability to overcome signature-based detection’s greatest flaw which is the
inability to detect novel or zero-day attacks. The most popular forms of ML-IDS utilize anomaly-
detection, a method in which algorithms first build a model of normalcy using benign network
traffic and then evaluate new traffic against the model to detect behaviors or patterns deviating from
this established normalcy [2][8]. These methods have been shown to be effective at identifying
potential threats to the system [2][9]. Anomaly detection is often the popular choice over other
machine learning techniques such as binary classification because it is often difficult to attain recent
and representative malicious samples on which to train the models.

Adversarial Machine Learning

As stated before, machine learning algorithms are sometimes deployed within adversarial
environments such as intrusion detection, spam filtering and fraud detection where they are
required to secure a system from unauthorized access [5]. Unfortunately, due to the nature of
unsupervised machine learning algorithms, they are heavily targeted by the adversaries they are
intended to protect against. This is because such a great advantage can be gained by the adversary
if they are able to subvert and infiltrate the system through the system’s own ML processes. This
is a factor few ML researchers take into account while developing new algorithms and techniques

[4].
The authors of [3] have created a three dimensional taxonomy designed to address how an attack

can affect an ML based system. These dimensions are Influence, the Security Violation and the
Specificity of the attack. The dimensions are broken down further into sub-categories: Influence

Approved for Public Release; Distribution Unlimited.
72

IS either causative or exploratory; the Security Violation targets either integrity or availability; and
the Specificity is either targeted or indiscriminate. Our research mainly focuses on studying an ML
system’s resistance to a Targeted Causative attack against the Integrity of the learning system. In
such an attack, an adversary chooses a specific anomalous point and makes an effort to influence
the ML system models to misclassify the test point.

This misclassification by the system is induced by inserting crafted points into the ML algorithm’s
training data to drift the learning model in a desired direction. This is a form of what is known as
adversarial drift. This process creates rules which may overfit the current training data, leading to
false positives, or worse yet, creates new models from data at the edge of the detection domain and
allows previously flagged malicious data into the system. The latter is of great concern, especially
for an ML-IDS.

We have identified three main sources from which model drift, which is any shift in the established
baseline of normalcy, can occur:

e Random noise and concept drift from the normal network traffic and its users.

e Adversarial drift from nonspecific, malicious probing of the network to create what
penetration testers call a “footprint.”

e Adversarial drift from specific targeting of the network in a persistent and threatening
manner to measure the efficacy of rules and possibly even insert edge data to influence
training to later allow malicious connections as authentic ones.

Unfortunately for system administrators, it is often incredibly difficult to differentiate between normal model drift
over time and deliberate adversarial model drift. Additionally, new patterns and model drift are often accounted for
through online learning or by periodically retraining the models. This gives an adversary an ideal means for inserting
malicious data into the learning models [4].

Experiment Framework

Our work focused on studying the resilience of an IDS’s underlying ML algorithms to induced
model drift. In this section, we describe an experimental framework that was created as a result
of this work for gathering statistical measurements and comparing various algorithms.

Goals

The main goals of our work were to develop a framework to study and test ML algorithms which
have or may be used in intrusion detection systems. This research was done in an effort to
demonstrate the strengths and weaknesses of these algorithms in regards to their susceptibility to
adversarial drift and offer suggestions for why and in what ways they can be effectively used in an
IDS. We intended to create a generic, universal framework to allow for the simple incorporation
of additional algorithms using various training data sources. We wanted to be able to compare
multiple algorithms, multiple implementations of similar or identical algorithms and to create
repeatable experiments. Through experimental iterations, the framework should provide statistical
measurements and analysis that better inform a system administrator.

Assumptions

In an authentic network, an intruder would have limited access to information about an ML-IDS
which has been deployed. While we certainly have a concern for external threats, the worst case
scenario is an insider threat or an intruder who has already gained access to the internal network.
We base our initial assumptions on this perspective. In order to have a worst case scenario baseline

Approved for Public Release; Distribution Unlimited.
73

where a potential adversary would have near full control over the IDS and all associated and
requisite resources, several assumptions were made to start with.

We operate under what is known as the contamination assumption [10]. This means that the
adversary has the ability to insert points that will be used during retraining of the ML-IDS. As
mentioned above, model drift is often accounted for through the use of retraining and online
learning, so it is not unreasonable to assume an adversary could take advantage of this window to
insert data. For our work, we limit this assumption to create a slightly more realistic case in which
insertion points must be classified as benign by the existing classifier in order to be included. We
assume that the adversary would wish to remain undetected by including only points that are not
flagged as suspicious and can be allowed into the re-training dataset via normal traffic through the
monitoring ML-IDS. The contamination assumption is necessary if the adversary desires to induce
drift in the models and force the ML-1DS to consider a point as normal that previous models would
have otherwise considered anomalous and blocked.

In initial experiments, we assume the adversary has full knowledge of the IDS, its classification
algorithms, the training data, and the results of classification. From this worst case scenario, we
could potentially dial back the assumed knowledge and access privileges an adversary might have
in order to gain a more realistic view of the measured weaknesses for each algorithm in an
adversarial environment.

Approach

We chose to design our framework around Monte Carlo simulations, which is an experimental
method that relies on repeated random sampling. This helps eliminate data specific results by
finding averages across multiple runs, decreasing the variance in our results. To this end, an
application program interface (API) was created with interfaces that allow for simply running
Monte Carlo experiments and adapting new algorithms and data sources for testing.

To set up an experiment, an ML-IDS was identified and its source code and documentation were
analyzed to identify the underlying ML algorithms, features included in monitoring and training,
as well as any perceived constraints in operation. Research was performed to determine if prior
investigations of the selected algorithms existed, including documented optimization approaches
that could be used. After identifying the type of data processed by the ML-IDS, an anomalous
point was identified with which to test the algorithm within the simulator. The simulator APl was
extended as appropriate to handle the new algorithm implementation library, the data type the ML-
IDS is designed to process, and the known vulnerability that would be used to model a live threat
in the experimentation.

Upon successful integration of the algorithm and data source into the API, the framework allows
for experiments to be run to identify precisely what effort an adversary would need to expend in
order to force a misclassification on the selected test point through model drift created by the
introduction of crafted insertion data into the training set. These experiments may be repeated for
varying training set sizes, different percentages of control the adversary has over the retrain data,
and varying algorithm-specific parameters values. For each configuration, multiple iterations are
run with randomly sampled data from the selected data source and the results are aggregated and
placed into graphs for further analysis. This provides the user with an overall picture of the
resistance of the algorithm to adversarial drift and may be used to compare algorithms.

Approved for Public Release; Distribution Unlimited.
74

The approach selected for the adversary in the experiments represents a worst case for the defender
in which each new point introduced by the adversary is added to the training set and causes a
retrain, as long as the point appears benign to the existing classifier. The adversary chooses the
point, which when added to the training set causes the greatest increase in the probability of
normalcy of the target point. The general form of this approach is summarized in Fig. 1 in which
I is equal to the list of injection points selected by the adversary, g(x0)I is equal to the probability

of x0 according to the model with I injected into the training set, and y is equal to the anomaly
threshold.

initialize I = &
while glxg)r <y

argrax
= I g xo)rse — 9(xo)y 5.t gy > ¥

addx"toI
retfurn |1

#

Fig. 1.Experimental approach to determine effort required
by an adversary to force misclassifications

The framework allows us to test both algorithm-specific and generic optimization approaches for
selecting the insertion points introduced by the adversary. A generic approach, such as genetic
algorithms that repeatedly retrain the algorithm to find the point that has the most optimal effect
on the test score of the target point, requires less prior knowledge of the algorithms and can
therefore be applied to a large variety of ML algorithms [7][11]. However, the repeated retrains
often take a large amount of time, which is infeasible with insufficient resources. Algorithm-
specific approaches require in-depth knowledge of the algorithms, but run faster and often create
points which have a greater effect. For the experiments described below, due to time and resource
constraints, we chose to develop algorithm-specific methods for selecting insertion points.

EXPERIMENT

In order to test the validity of our proposed approach for analyzing the resistance of an IDS’s
machine learning algorithms to induced model drift, a number of experimental runs were
performed. This section describes the various algorithms that were investigated, including an
open-source IDS which relies on machine learning, and the experimental procedure.

Centroid Anomaly Detector

The first algorithm studied was a simple centroid anomaly detector [12]. This algorithm is trained
by simply finding the empirical mean of the training examples. An unlabeled data point is then
tested by calculating its Euclidean distance to the mean, or centroid. If this distance is greater than
a determined threshold, then the point is considered to be anomalous. Calculation of a data point’s
anomaly score is summarized in (1).

n

1
X—Hin

i=1

F() = (1)

Despite its incredible simplicity, this algorithm is popular in various security applications [12].
We chose to run initial experiments with the centroid anomaly detector due to its low computation

Approved for Public Release; Distribution Unlimited.
75

time, applicability, and its ability to be easily comprehended and visualized. Its primary purpose
is to be used as a baseline experiment to demonstrate our approach.

Additionally, the optimal undetected approach is relatively straightforward from the adversary’s
perspective. The adversary determines the vector between the target anomalous point and the
centroid and inserts a point along this vector at a distance from the centroid equal to the anomaly
threshold value. This approach is illustrated in Fig. 2.

Target Point
- S
—
e ~ []

. .
Insertion Point \\

Fig. 2. lllustration of the optimal drift strategy against a centroid anomaly detector

Support Vector Machines

After these baseline experiments, we proceeded to study one-class support vector machines
(SVMs). An SVM is a machine learning model which is designed to create a separating plane
between two classes of data, and a one-class SVM is a special case which separates normal from
anomalous. In order to do this, the one-class SVM first maps the training data into the kernel
space, in our case using the Gaussian kernel shown in (2), and then finds the hyperplane which
separates a desired fraction of the training points from the origin. This algorithm was chosen due
to its relative simplicity and common appearance in ML-1DS research [2][13][14].

K(x,y) = ®(x)-0(y) =exp(-7|x-y|") @

During our experimentation with this algorithm, we developed a quick method to determine the
insertion point which will have the near-optimal drift effect from the adversary’s perspective. The
adversary simply finds the support vector nearest to the target anomalous point, and inserts the
point along the vector between the two that is closest to the target anomaly without being flagged
as anomalous.

Hidden Markov Models / HMMPayl

Next, we focused on the evaluation of Hidden Markov Models (HMMs). An HMM is a machine
learning model consisting of hidden states which follow the Markov property and have associated
initial and transition probabilities. In addition, an HMM consists of observed variables, with each
variable having a certain probability of occurring in each hidden state. Sequences of observed
variables are used to train the HMM and learn the hidden state and observed variable probability
matrices. Once learned, these probabilities are used to determine the probability score of new test
observation sequences. This algorithm was chosen again due to its relative simplicity as well as its
common appearance in ML-1DS research [9][15][16].

Approved for Public Release; Distribution Unlimited.
76

During this study, we also investigated HMMPayl, an open-source network IDS which utilizes
HMMs to detect anomalies. HMMPayl inspects network packet payloads represented as byte
strings, using the n-grams from these byte strings to train its models. In an effort to increase
classification accuracy, HMMPayl uses an ensemble of HMMSs, combining the results from each to
make its predictions [9].

Through an investigation of the algorithm, we developed a quick method and heuristic to determine
the adversary’s near-optimal insertion points. Since the sequence probabilities returned by an
HMM are largely driven by the frequency of individual symbols in the training set, we chose to
focus our approach on these frequencies. We wanted to target the specific n-grams from the test
point that contained symbols common in the point but also had low probabilities, meaning that they
likely contained symbols uncommon in the training set. Therefore, to create the adversary’s
insertion points, for a set number of iterations we iteratively added symbols to the insertion point
according to (3) where T(x) is the number of times symbol x occurs in the test point and Tr(X) is the
number of times x appears in the training set. Then, if the constructed insertion point is considered
anomalous by the existing model, symbols in the point are iteratively replaced by the symbol
occurring most frequently in the training set until the point is no longer flagged.

o argmax T (x) -
X Tr(x)?

Procedure

Two sets of experiments were run using the Monte Carlo simulation framework. In the first set,
the above described algorithms were used to classify color values as either normal or anomalous
based on their RGB values. The RGB value of a color is the extent of red, green, and blue the
color contains, represented as integer values between 0 and 255 inclusive. Therefore each training
point is a vector of integers of length three. The training sets used for these experiments were
sampled from a Gaussian distribution with a mean of 127 and a standard deviation of 30. We then
selected colors that the selected classifiers identified as anomalous, and measured the effort
required by an adversary to force misclassifications using the outlined approach. While this data
set is overly simplistic, it allows us to easily illustrate the above described concepts and to identify
general trends.

The second set of experiments was designed to be more realistic, testing the resiliency of the actual
IDS to adversarial drift using network data. For these experiment runs, we utilized the DARPA’99
dataset [17] to train the anomaly detection models and used the HTTP attack dataset from [18] as
our test points on which to force misclassifications. Although the DARPA’99 dataset is outdated
and has been widely criticized [19], it is still highly appropriate and valuable for our needs. It is
the most common public dataset used to baseline ML-IDS and lends to the repeatability of our
experiments. Additionally, the largest complaint against DARPA’99 is that it is no longer suitable
for measuring the accuracy of an IDS and its ability to detect intrusions. However, this is not the
context for which we are using it. Our goal was to find appropriately formatted network data and
some attack point that is flagged as anomalous by the classifier trained on this data. This approach
does not consider the overall accuracy of the classifier, but rather its ability to continue making an
accurate prediction despite adversarial attempts to induce model drift.

Approved for Public Release; Distribution Unlimited.
7

Results and Discussion

In this section we discuss the preliminary results of the above described experiments, highlight the
statistical measurements our framework allows the user to gather, and identify general trends.

For the first set of experiments using the color RGB data, we selected two colors that were found
to be anomalous by each of the three chosen algorithms and used these as our test points. These
two colors were green-yellow and goldenrod which had RGB values of [173, 255, 47] and [255,
193, 37] respectively. We then deployed our algorithm-specific approaches to determine the
number of points the adversary must insert in order to change the classification of each color. We
varied the size of the training set and for each training set size ran multiple iterations with
randomized data. The results of these experiments are summarized in Fig. 3. The y-axis on the
plots has been scaled logarithmically due to the large disparity between the algorithms. However,
it should be noted that the relationship between the training set size and effort required by the
adversary was in fact linear. These experiments allow for a simple comparison between algorithms.
For the purpose of detecting anomalous colors, SVMs appear to be significantly more susceptible
to adversarial drift than a simple centroid anomaly detector. This also shows the advantage of using
a large training dataset for defending against adversarial drift, which must be weighed against the
increased cost of acquiring data and training.

Green-yellow
100000

10000

1000 - # Centroid Anomaly Detector
’
100 4 BHMM
] SVM
10 F
I

Number of Required Insertion
Points

1+ T T 1
0 10000 20000 30000 40000 50000

Number of Points in Training Set

Goldenrod
100000

10000

1000
Centroid Anomaly Detector

EHMM
SVM

100

10

A\

14 —
0 10000 20000 30000 40000 50000

Number of Required Insertion
Points

Number of Points in Training Set

Fig. 3. Effort required by an adversary to cause
misclassifications of selected anomalous points using

In the next experiment, for a fixed training set size, we tested each algorithm with a wide variety
of different colors to determine the number of points necessary for the adversary to insert in order
to force a misclassification on each. This value was then compared against the initial test scores
to gain a better understanding of the relationship between the extent to which a point is anomalous
and the model’s resistance to adversarial drift towards the point. The results of this experiment

Approved for Public Release; Distribution Unlimited.
78

are summarized in Fig. 4. The centroid anomaly detector and HMM both show a clear correlation
between anomaly score and effort required by the adversary. The centroid anomaly detector shows
a positive correlation because its test score represents a distance from normalcy, while HMM
shows a negative correlation because its test score represents a probability of being benign. The
relationship for the SVM is not as clear due to many of the points’ initial test scores rounding to
zero, but there appears to be a loosely negative correlation. The initial test score is scaled
logarithmically (with log(0) set to 0) to make this correlation more clear.

Centroid Anomaly Detector
5000

-]
- '~
E E 4000 o
=
& & 3000
[
= &
x E 2000
259
E B 1000
4
0 T T T T T T Y
100 120 140 160 180 200 220 240
Initial Test Score of Point
HMM
140
k-]
g . 120
g% 100
¥ P g
s £ *
:E &0
22
2 £ 40 o
E'—' 20 »_* + * ‘4.
Z e
0
0.00E+00 2.00E-09 4.00E-03 6.00E-09 8.00E-09 1.00E-08
Initial Test Score of Point
SVM
8
=
g7
25
gE°
s Es
= £ 3
5%
B B B
55,
1 e W HHORR0 SR OND O
z
0 T T T T 1

o

20 40 60 80 100
log(Initial Test Score of Point x 10e308)

Fig. 4. Effort required by an adversary to cause
misclassifications of anomalous points using various

This experimental framework also allows the user to determine values for algorithm specific
parameters that are the least susceptible to model drift. For example, Fig. 5 shows the results of
four different colors tested against different configurations of the centroid anomaly detector.
These configurations represent different methods for setting the threshold value and for adding
new points to the training set. The threshold may be set to either a pre-determined fixed value or
to a value such that a certain percentage of the training data is considered non-anomalous. Newly
received points may either replace a point in the existing training set, retaining a fixed size, or be

Approved for Public Release; Distribution Unlimited.
79

appended to the end of it. In the plot, the initial test score of the colors, when averaged across
varying training set sizes, is compared against the average percent of the size of the original
training set that the adversary was forced to inject. This gives a clear indication of which
configuration causes the most effort for the adversary. In this instance, setting a fixed threshold
value and using an infinite training window would be the most secure.

90

o
e
& 80 =
=
€ 7
= .
2 w60 # Fixed Threshold FIFO
-]
&S0
E * M Fixed Threshold Infinite
-a 40 = Window

=
E ; 30 X Percent Normal FIFO
@ 20 *
%ﬂ ! Percent Normal Infinite
- 10 .
g Window
= 0 . ‘ . .

100 120 140 160 180

Average Initial Test Score of Point

Fig. 5.Effort required by an adversary to cause
misclassifications of four anomalous points using four
different configurations of the centroid anomaly detector.

The primary purpose of these initial color RGB experiments was to test the legitimacy of the
framework’s capabilities and to discover baseline patterns. The next step was to validate these
results using the open-source IDS HMMPayl with actual network data. Initially, we selected an
intrusion point from the identified attack data set that was consistently flagged by HMMPayl when
trained with data from the DARPA’99 dataset. This attack point actually consisted of seven packet
payloads representing a chunked encoding transfer heap overflow against Microsoft 11S [18]. The
HMM-specific adversarial approach was applied until each of the seven payloads went undetected
by the IDS. This was repeated multiple times with randomly selected normal traffic for varying
training set sizes. The results of this experiment are shown in Fig. 6. A linear relationship between
the training set size and the number of insertion points required by the adversary immediately
becomes apparent. The slope of the best-fit line reveals that on average the adversary need only
insert 0.486% of the training set size to successfully induce model drift while remaining
undetected.

Approved for Public Release; Distribution Unlimited.
80

[
]
=1

[
o
S

=]
=
+*
+
-+

B

S
b
s

Average Required Number of
Insertion Points
K [=1]
(=] =
*
1+

o

0 5000 10000 15000 20000
Number of Points in Training Set

Fig. 6.Effort required by an adversary to cause

misclassification of every packet payload in selected attack
neina HMMNMPavl

Fig. 7 displays the results of a single run of an attempt to induce model drift on the models created
using a training set size of 5000. This shows the impact after each round of retraining that the

adversary had on the test score of each of the four initially-flagged payloads from the attack in
relation to the anomaly threshold.

1.4E-12

[A]
1.2E-12
B B
1E-12
2 n
= 4 Payload 1
S se13 - ayloa
v . i M Payload 2
¥ GE-13 X AR X
ﬁ n Payload 3
4E-13 p & % Payload 4
2E-13 —"—"H-" Anomaly Threshold
gl
0 T T T T 1
0 5 10 15 20 25

Number of Points Inserted

Fig. 7.Resulting HMMPay! test score of payloads from
selected attack after the introduction of each insertion point
by the adversary

Similar to the color experiments, we next selected every individual packet payload from the attack
dataset. For a fixed training set size of 15000 points, we determined the number of insertion points
required by the adversary in order to create a misclassification on each payload. This is compared
against the initial test score of the payloads to give the security administrator an overall feel for
the resiliency of the system. The results of this experiment are summarized in Fig. 8. For the
selected attack points there is a loosely negative correlation between the initial test score and the
required number of insertion points. It can also be seen that the adversary needs to insert no more
than fifteen non-anomalous points, or 0.1% of the training set, in order to create a misclassification.

Approved for Public Release; Distribution Unlimited.
81

[ary
=a

>

,‘é . 14

gL *

TEn = = 5

o & G &

5 Ew ‘

= E ¢+ ¢ +

]

2 2 8

5 g

=

Z 6 o
1 . . |
SE-14 1E-13 1.5E-13 2E-13

Initial Test Score of Point

Fig. 8.Effort required by an adversary to cause misclassifications
of the selected attack packet payloads using HMMPayl trained
with 15000 points.

Conclusions

As a result of the work presented in this paper, we have created a methodology to explore the
susceptibility of algorithms used in research-based ML-IDS to induced data drift while they are
operating in an adversarial environment. The methodology was developed while examining and
subsequently testing several anomaly detectors to establish the baseline approach and results. We
further developed and validated the methodology through analysis of additional algorithms
implemented in an ML-IDS. We identified potential heuristics to create insertion points in order to
induce data drift and isolated a usable method for the HMM-based ML-IDS. We then ran a series
of experiments to thoroughly exercise the HMM-based ML-IDS in order to explore it's
susceptibility to induced data drift while operating in our tightly controlled adversarial environment.
We progressed from the overly-simplified RGB values used to establish baseline results to using
the data from the DARPA '99 dataset and the attack dataset from [18] so as to include real-world
network traffic data. Our initial experiments demonstrate the type of valuable information that a
system administrator may gain through the use of our framework, and preliminary results indicate
that the ML algorithms utilized by ML-IDS are indeed susceptible to induced data drift while
operating in an adversarial environment.

There are many interesting and novel directions in which the research may progress from this point
beyond just further data collection and analysis. Future research should extend to include:

Exploring algorithms not yet covered which have been used or may be used by other ML-IDS [14].

Testing alternative libraries that implement included/excluded algorithms to explore sensitivities
related to implementations across identical algorithms.

Investigating additional data types that are considered by IDSs, both commercial and in research,
such as trace and log file parsers, executable analyzers and even multi-session analyzers.

Studying defensive remediation that can be used to mitigate the vulnerabilities observed as a part
of this work [3].

Approved for Public Release; Distribution Unlimited.
82

References

S. Dua and X. Du, Data Mining andMachine Learningin Cybersecurity. Boca Raton, FL: Auerback
Publications, 2011.

R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee, “McPAD: a multiple classifier system for
accurate payload-based anomaly detection,” in Computer Networks 53, vol. 6, pp. 864-881,
2009.

M. Barreno, B. A. Nelson, A. D. Joseph, and J. Tygar, “The security of machine learning,” in
Machine Learning, vol. 81, no. 2, 2010, pp. 121-148.

A.Kantchelian, et al., "Approaches to Adversarial Drift", in AlSec’13, New York: ACM, 2013,
pp. 99-110.

B. Biggio, 1. Corona, D. Maiorca, B. Nelson, N. Srndié, P. Laskov, G.Giacinto, and F. Roli,
“Evasion atacks against machine learning at test time,” in Machine Learning and Knowledge
Discovery in Databases, Springer Berlin Heidelberg, 2013, pp. 387-402.

B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector machines,” in
arXiv preprint arXiv, vol. 1206, no. 6389, 2012.

M. Kermani, S. Sur-Kolay, A. Raghunathan, N. Jha, "Systematic Poisoning Attacks on and
Defenses for Machine Learning in Healthcare™ in IEEE Journal of Biomedical and Health
Informatics, vol. PP, New York: IEEE, 2014, pp. 1.

K. Tan, K. Killourhy, R. Maxion, "Undermining an Anomaly-Based Intrusion Detection System
Using Common Exploits”, in RAID'02 Proceedings of the 5th international conference on
Recent advances in intrusion detection. Heidelberg: Springer-Verlag, 2002, pp. 54-73.

D. Ariu, R. Tronci, and G. Giancinto, “HMMPayl: an intrusion detetion system based on hidden
markov models,” in Computers and Security 30, no. 221, 2011.

B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. IP Rubenstein, U. Saini, C. A. Sutton, J. D.
Tygar, and K. Xia, “Exploiting machine learning to subvert your spam filter,” in LEET 8, 2008,
pp.1-9.

K. Nelson, G. Corbin, M. Blowers, “Evaluating data distribution and drift vulnerabilities of
machine learning algorithms in secure and adversarial environments,” in SPIE Sensing
Technology+ Applications, International Society for Optics and Photonic, 2014.

M. Kloft and P. Laskov, “Online anomaly detection under adversarial impact,” 2011.

B. Scholkopf, J. Platt, J. Shawe-Taylor, A. Smola, R. Williamson, "Estimating the Support of a
High-Dimensional Distribution”, in Technical Report MSR-TR-99-87, Redmond: Microsoft
Research, 2000.

C. Tsai, Y. Hsu, C. Lin, W. Lin, "Intrusion detection by machine learning: a review", in Expert
Systems with Applications, Vol. 36, Elsevier, 2009, pp. 11994-12000.

I. Corona, R. Tronci, G. Giacinto, "SuStorID: A multiple classifier system for the protection of
web services"”, Pattern Recognition (ICPR), 2012 21st International Conference, IEEE, 2012
pp. 2375-2378.

Rabiner, L., "A tutorial on hidden Markov models and selected applications in speech recognition,"
Proceedings of the IEEE , vol.77, no.2, pp.257,286, Feb 1989

Approved for Public Release; Distribution Unlimited.
83

R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The 1999 DARPA off-line intrusion
detection evaluation,” in Computer networks 34, no. 4, 2000, pp. 579-595.

K. L. Ingham, and H. Inoue, “Comparing anomaly detection techniques for http,” in Recent
Advances in Intrusion Detection, Springer Berlin Heidelberg, 2007, pp. 42-62.

M. V. Mahoney, and P. K. Chan, “An analysis of the 1999 DARPA/Lincoln laboratory
evaulation data for network anomaly detection,” in Recent Advances in Intrusion Detection, pp.
220-237, Springer Berlin Heidelberg, 2003

Bibliography

S. Dua and X. Du, Data Mining and Machine Learning in Cybersecurity. Boca Raton, FL:
Auerback Publications, 2011.

R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee, “McPAD: a multiple classifier system for
accurate payload-based anomaly detection,” in Computer Networks 53, vol. 6, pp. 864-
881, 2009.

M. Barreno, B. A. Nelson, A. D. Joseph, and J. Tygar, “The security of machine learning,” in
Machine Learning, vol. 81, no. 2, 2010, pp. 121-148.

A.Kantchelian, et al., "Approaches to Adversarial Drift", in AlSec’13, New York: ACM, 2013,
pp. 99-110.

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndi¢, P. Laskov, G.Giacinto, and F. Roli,
“Evasion attacks against machine learning at test time,” in Machine Learning and
Knowledge Discovery in Databases, Springer Berlin Heidelberg, 2013, pp. 387-402.

B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector machines,” in
arXiv preprint arXiv, vol. 1206, no. 6389, 2012.

M. Kermani, S. Sur-Kolay, A. Raghunathan, N. Jha, "Systematic Poisoning Attacks on and
Defenses for Machine Learning in Healthcare™ in IEEE Journal of Biomedical and Health
Informatics, vol. PP, New York: IEEE, 2014, pp. 1.

K. Tan, K. Killourhy, R. Maxion, "Undermining an Anomaly-Based Intrusion Detection System
Using Common Exploits”, in RAID'02 Proceedings of the 5th international conference on
Recent advances in intrusion detection. Heidelberg: Springer-Verlag, 2002, pp. 54-73.

D. Ariu, R. Tronci, and G. Giancinto, “HMMPayl: an intrusion detection system based on Hidden
Markov Models,” in Computers and Security 30, no. 221, 2011.

B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. IP Rubenstein, U. Saini, C. A. Sutton, J. D.
Tygar, and K. Xia, “Exploiting machine learning to subvert your spam filter,” in LEET 8,
2008, pp.1-9.

M. Kloft and P. Laskov, “Online anomaly detection under adversarial impact,” 2011.

B. Scholkopf, J. Platt, J. Shawe-Taylor, A. Smola, R. Williamson, "Estimating the Support of a
High-Dimensional Distribution”, in Technical Report MSR-TR-99-87, Redmond:
Microsoft Research, 2000.

C. Tsai, Y. Hsu, C. Lin, W. Lin, "Intrusion detection by machine learning: a review", in Expert
Systems with Applications, Vol. 36, Elsevier, 2009, pp. 11994-12000.

I. Corona, R. Tronci, G. Giacinto, "SuStorID: A multiple classifier system for the protection of
web services"”, Pattern Recognition (ICPR), 2012 21st International Conference, IEEE,
2012 pp. 2375-2378.

Approved for Public Release; Distribution Unlimited.
84

Rabiner, L., "A tutorial on hidden Markov models and selected applications in speech recognition,"
Proceedings of the IEEE , vol.77, no.2, pp.257,286, Feb 1989

R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The 1999 DARPA off-line intrusion
detection evaluation,” in Computer networks 34, no. 4, 2000, pp. 579-595.

K. L. Ingham, and H. Inoue, “Comparing anomaly detection techniques for http,” in Recent
Advances in Intrusion Detection, Springer Berlin Heidelberg, 2007, pp. 42-62.

M. V. Mahoney, and P. K. Chan, “An analysis of the 1999 DARPA/Lincoln laboratory evaulation
data for network anomaly detection,” in Recent Advances in Intrusion Detection, pp. 220-
237, Springer Berlin Heidelberg, 2003.

Tavallaee, M., Stakhanova, N., & Ghorbani, A. A. (2010, September). Toward Credible Evaluation
of Anomaly-Based Intrusion-Detection Methods. IEEE Transactions on Systems, Man, and
Cybernetics - Part C, 40(5), 516-524.

Approved for Public Release; Distribution Unlimited.
85

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

AFFG Adaptive Fuzzy Fitness Granulation
AFRL Air Force Research Laboratory

Al Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BSM Basic Security Module
DARPA Defense Advanced Research Projects Agency
DB Database

DoD Department of Defense

DT Decision Tree

GA Genetic Algorithm

GUI Graphical User Interface
HMM Hidden Markov Model

HPC High Performance Computer
HTTP Hypertext Transfer Protocol
ICS Industrial Control Systems
IDS Intrusion Detection System
IMAP Internet Message Access Protocol
10 Input/Output

JDBC Java Database Connectivity technology
JMS Java Message Service

KDD Knowledge Discovery and Data Mining
KNN K-Nearest Neighbor

LDAP Lightweight Directory Access Protocol
ML Machine Learning

ML-IDS Machine Learning-based Intrusion Detection System
MOM Message Oriented Middleware

OISF Open Information Security Foundation
PCA Principal Component Analysis

PCap network Packet Capture

POP3 Post Office Protocol 3

Approved for Public Release; Distribution Unlimited.
86

PSO Particle Swarm Optimization

RBF Radial Basis Function

REST REpresentational State Transfer
RGB Red Green Blue

RMI Remote Method Invocation

SA Simulated Annealing

SCADA Supervisory Control And Data Acquisition
SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SOM Self-Organizing Map

SVM Support Vector Machine

TCP Transmission Control Protocol

VM Virtual Machine

XML Extensible Markup Language

Approved for Public Release; Distribution Unlimited.
87

	LIST OF FIGURES
	List of tables
	1.0 Summary
	2.0 Introduction
	2.1 Purpose
	2.2 Background
	2.3 Scope

	3.0 Technical factors of experimentation
	3.1 Methods, assumptions, and procedures
	3.2 Results and Discussion
	3.2.1 Algorithm Selection.
	3.2.1.1 Centroid Anomaly Detector. The first algorithm studied was the simple centroid anomaly detector. This algorithm is trained by simply finding the empirical mean of the training examples. An unlabeled data point is then tested by calculating...
	3.2.1.2 Hidden Markov Model.
	3.2.1.4 K-Means Anomaly Detector. As the research progressed, we additionally chose to investigate the K-Means anomaly detection algorithm. This algorithm operates by first clustering the training data using the K-Means clustering algorithm in the fe...

	3.2.2 Real World ML-IDS.
	3.2.2.1 SuStorID.
	3.2.2.3 HMMPayl.

	4.0 Conclusions
	4.1 Recommendations
	4.2 Future Research

	5.0 references
	APPENDIX A - Data Mining in Cyber Operations (Cybersecurity Systems for Human Cognition Augmentation)
	APPENDIX B - Evaluating data distribution and drift vulnerabilities of machine learning algorithms in secure and adversarial environments (SPIE DSS 2014)
	Kevin Nelsona, George Corbina, Dr. Misty Blowersb aBAE Systems, 581 Phoenix Drive, Rome, NY, USA 13441; bAir Force Research Laboratory, 525 Brooks Rd., Rome, NY USA 13441
	Introduction
	Experiment
	Conclusions
	References
	APPENDIX C - Evaluating Model Drift in Machine Learning Algorithms (IEEE CISDA 2015)
	List of Symbols, Abbreviations, and Acronyms

